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Preface iii

Preface

Particle physics has been revolutionized by the development of a new
“paradigm”, that of gauge theories. The SU(2) x U(1) theory of electroweak in-
teractions and the color SU(3) theory of strong interactions provide the present
explanation of three of the four previously distinct forces. For nearly ten years
physicists have sought to unify the SU(3) x SU(2) x U(1) theory into a single
group. This has led to studies of the representations of SU(5), O(10), and E6.
Efforts to understand the replication of fermions in generations have prompted
discussions of even larger groups.

The present volume is intended to meet the need of particle physicists
for a book which is accessible to non-mathematicians. The focus is on the
semi-simple Lie algebras, and especially on their representations since it is
they, and not just the algebras themselves, which are of greatest interest to the
physicist. If the gauge theory paradigm is eventually successful in describing
the fundamental particles, then some representation will encompass all those
particles.

The sources of this book are the classical exposition of Jacobson in his
Lie Algebras and three great papers of E.B. Dynkin. A listing of the references
is given in the Bibliography. In addition, at the end of each chapter, references
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are given, with the authors’ names in capital letters corresponding to the listing
in the bibliography.

The reader is expected to be familiar with the rotation group as it arises
in quantum mechanics. A review of this material begins the book. A familiarity
with SU(3) is extremely useful and this is reviewed as well. The structure of
semi-simple Lie algebras is developed, mostly heuristically, in Chapters III -
VII, culminating with the introduction of Dynkin diagrams. The classical Lie
algebras are presented in Chapter VIII and the exceptional ones in Chapter
IX. Properties of representations are explored in the next two chapters. The
Weyl group is developed in Chapter XIII and exploited in Chapter XIV in the
proof of Weyl’s dimension formula. The final three chapters present techniques
for three practical tasks: finding the decomposition of product representations,
determining the subalgebras of a simple algebra, and establishing branching
rules for representations. Although this is a book intended for physicists,
it contains almost none of the particle physics to which it is germane. An
elementary account of some of this physics is given in H. Georgi’s title in this
same series.

This book was developed in seminars at the University of Michigan and
the University of California, Berkeley. I benefited from the students in those
seminars, especially H. Haber and D. Peterson in Ann Arbor and S. Sharpe in
Berkeley. Sharpe, and H.F. Smith, also at Berkeley, are responsible for many
improvements in the text. Their assistance is gratefully acknowledged.
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I. SU(2)

A geometrical vector in three-dimensional space can be represented by a
column vector whose entries are the x, y, and z components of the vector. A
rotation of the vector can be represented by a three-by-three matrix. In particular,
a rotation by φ about the z-axis is given by







cosφ − sin φ 0

sin φ cosφ 0

0 0 1






. (I.1)

For small rotations,






cosφ − sinφ 0

sin φ cosφ 0

0 0 1






≈ I − iφTz , (I.2)

where Tz is the matrix
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0 −i 0

i 0 0

0 0 0






. (I.3)

In a similar fashion we find Tx and Ty:

Tx =







0 0 0

0 0 −i

0 i 0






, Ty =







0 0 i

0 0 0

−i 0 0






. (I.4)

By direct computation we find that the finite rotations are given as expo-
nentials of the matrices Tx, Ty, and Tz. Thus we have

exp(−iφTz) =







cosφ − sinφ 0

sin φ cosφ 0

0 0 1






. (I.5)

The product of two rotations like exp(−iθTy) exp(−iφTz) can always be written as
a single exponential, say exp(−iα · T ) where α · T = αxTx + αyTy + αzTz. Suppose
we set exp(−iα · T ) exp(−iβ · T ) = exp(−iγ · T ) and try to calculate γ in terms of
α and β. If we expand the exponentials we find

[1 − iα · t−1
2 (α · t)2 + · · ·][1 − iβ · t − 1

2 (β · t)2 + · · ·]

=
[

1 − i(α + β) · t − 1
2 ((α + β) · t)2 − 1

2 [α · t, β · t] + · · ·
]

= exp{−i(α + β) · t − 1
2 [α · t, β · t] + · · ·} . (I.6)

To this order in the expansion, to calculate γ we need to know the value of the
commutators like [Tx, Ty], but not ordinary products like TxTy. In fact, this is true
to all orders (and is known as the Campbell-Baker-Hausdorff theorem1). It is for
this reason that we can learn most of what we need to know about Lie groups by
studying the commutation relations of the generators (here, the T ’s). By direct
computation we can find the commutation relations for the T ’s:
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[Tx, Ty] = iTz, [Ty, Tz] = iTx, [Tz, Tx] = iTy. (I.7)

These commutation relations which we obtained by considering geometrical
rotations can now be used to form an abstract Lie algebra. We suppose there are
three quantities tx, ty, and tz with a Lie product indicated by [ , ]

[tx, ty] = itz, [ty, tz] = itx, [tz, tx] = ity. (I.8)

We consider all linear combinations of the t’s and make the Lie product linear in
each of its factors and anti-symmetric:

[a · t + b · t, c · t] = [a · t, c · t] + [b · t, c · t] , (I.9)

[a · t, b · t] = − [b · t, a · t] . (I.10)

It is easy to show that the Jacobi identity follows from Eq. (I.8):

[a · t, [b · t, c · t]] + [b · t, [c · t, a · t]] + [c · t, [a · t, b · t]] = 0 . (I.11)

When we speak of the abstract Lie algebra, the product [a · t, b · t] is not to be
thought of as a · t b · t − b · t a · t , since the product a · tb · t has not been defined.
When we represent the algebra by matrices (as we did at the outset), then of course
the ordinary product has a well-defined meaning. Nevertheless, by custom we often
refer to the Lie product as a commutator.

The abstract Lie algebra derived above from the rotation group displays the
features which define Lie algebras in general. A Lie algebra is a vector space, L,
(above, the linear combinations of the t’s) together with a bilinear operation (from
L × L into L ) satisfying
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[x1 + x2, y] = [x1, y] + [x2, y] , x1, x2, y ∈ L

[ax, y] = a [x, y] , a ∈ F, x, y ∈ L

[x, y] = − [y, x] , x, y ∈ L

0 = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] , x, y, z ∈ L . (I.12)

Here F is the field over which L is a vector space. We shall always take F to be
the field of real numbers, R, or the field of complex numbers, C.

Having motivated the formal definition of a Lie algebra, let us return to the
specific example provided by the rotation group. We seek the representations of
the Lie algebra defined by Eq. (I.8). By a representation we mean a set of linear
transformations (that is, matrices) Tx , Ty , and Tz with the same commutation
relations as the t’s. The T ’s of Eqs. (I.3) and (I.4) are an example in which the
matrices are 3 × 3 and the representation is said to be of dimension three.

We recall here the construction which is familiar from standard quantum
mechanics texts. It is convenient to define

t+ = tx + ity , t− = tx − ity , (I.13)

so that the commutation relations become

[tz , t+] = t+ , [tz , t−] = −t− , [t+, t−] = 2tz . (I.14)

We now suppose that the t’s are to be represented by some linear transformations:
tx → Tx,ty → Ty, tz → Tz. The T ’s act on some vector space, V . We shall in
fact construct this space and the T ’s directly. We start with a single vector, vj and
define the actions of Tz and T+ on it by

Tzvj = jvj , T+vj = 0 . (I.15)

Now consider the vector T−vj . This vector is an eigenvector of Tz with eigenvalue
j − 1 as we see from
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TzT−vj = (T−Tz − T−)vj = (j − 1)T−vj . (I.16)

Let us call this vector vj−1 ≡ T−vj . We proceed to define additional vectors se-
quentially:

vk−1 = T−vk . (I.17)

If our space, V , which is to consist of all linear combinations of the v’s, is to be
finite dimensional this procedure must terminate somewhere, say when

T−vq = 0 . (I.18)

In order to determine q, we must consider the action of T+. It is easy to see
that T+vk is an eigenvector of Tz with eigenvalue k + 1. By induction, we can show
that T+vk is indeed proportional to vk+1. The constant of proportionality may be
computed:

rkvk+1 =T+vk

=T+T−vk+1

=(T−T+ + 2Tz)vk+1

=[rk+1 + 2(k + 1)]vk+1 . (I.19)

This recursion relation for rk is easy to satisfy. Using the condition rj = 0, which
follows from Eq. (I.15), the solution is

rk = j(j + 1) − k(k + 1). (I.20)

Now we can find the value of q defined by Eq. (I.18):
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T+T−vq =0

=(T−T+ + 2Tz)vq

=[j(j + 1) − q(q + 1) + 2q]vq . (I.21)

There are two roots, q = j + 1, and q = −j. The former is not sensible since we
should have q ≤ j. Thus q = −j, and 2j is integral.

In this way we have recovered the familiar representations of the rotation
group, or more accurately, of its Lie algebra, Eq. (I.14). The eigenvalues of Tz

range from j to −j. It is straightforward to verify that the Casimir operator

T 2 =T 2
x + T 2

y + T 2
z

=T 2
z + 1

2 (T+T− + T−T+) , (I.22)

has the constant value j(j + 1) on all the vectors in V :

T 2vk =[k2 + 1
2 (rk−1 + rk)]vk

=j(j + 1)vk . (I.23)

The 2j +1 dimensional representation constructed above is said to be irreducible.
This means that there is no proper subspace of V (that is, no subspace except V
itself and the space consisting only of the zero vector) which is mapped into itself
by the various T ’s. A simple example of a reducible representation is obtained by
taking two irreducible representations on the space V1 and V2, say, and forming the
space V1⊕V2. That is, the vectors, v, in V are of the form v = v1 +v2, with vi ∈ Vi.
If tz is represented by T 1

z on V1 and by T 2
z on V2, we take the representation of

tz on V to be Tz(v1 + v2) = T 1
z v1 + T 2

z v2, and so on for the other components.
The subspaces V1 and V2 are invariant (that is, mapped into themselves) so the
representation is reducible.
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A less trivial example of a reducible representation occurs in the “addition
of angular momentum” in quantum mechanics. Here we combine two irreducible
representations by forming the product space V = V1 ⊗ V2. If the vectors u1m and
u2n form bases for V1 and V2 respectively, a basis for V is given by the quantities
u1m ⊗ u2n. We define the action of the T ’s on V by

Tz(u1m ⊗ u2n) = (T 1
z u1m) ⊗ u2n + u1m ⊗ (T 2

z u2n) , (I.24)

etc. If the maximum value of T 1
z on V1 is j1 and that of T 2

z on V2 is j2, there is an
eigenvector of Tz = T 1

z + T 2
z with eigenvalue j1 + j2. By applying T− = T 1

− + T 2
−

repeatedly to this vector, we obtain an irreducible subspace, Uj1+j2 , of V1 ⊗V2. On
this space, T 2 = (j1+j2)(j1+j2+1). Indeed, we can decompose V1⊗V2 into a series
of subspaces on which T 2 takes the constant value k(k+1) for |j1−j2| ≤ k ≤ j1+j2,
that is V1 ⊗ V2 = Uj1+j2 ⊕ . . . ⊕ U|j1−j2|.

The representation of smallest dimension has j = 1/2. Its matrices are 2× 2
and traceless. The matrices for Tx, Ty, and Tz are hermitian (a hermitian matrix
M , satisfies M∗

ji = Mij where ∗ indicates complex conjugation). If we consider
the real linear combinations of Tx, Ty, and Tz we obtain matrices, T , which are
traceless and hermitian. The matrices exp(iT ) form a group of unitary matrices
of determinant unity (a matrix is unitary if its adjoint - its complex conjugate
transpose - is its inverse). This group is called SU(2), S for “special” ( determinant
equal to unity), and U for unitary. The rotations in three dimensions, O(3), have
the same Lie algebra as SU(2) but are not identical as groups.
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Footnote

1. See, for example, JACOBSON, pp. 170–174.

References

This material is familiar from the treatment of angular momentum in quan-
tum mechanics and is presented in all the standard texts on that subject. An
especially fine treatment is given in GOTTFRIED.

Exercises

Define the standard Pauli matrices

σx =

[

0 1

1 0

]

, σy =

[

0 −i

i 0

]

, σz =

[

1 0

0 −1

]

.

1. Prove that tx → 1
2σx, ty → 1

2σy , etc. is a representation of SU(2).

2. Prove, if α · σ = αxσx + αyσy + αzσz , etc. then α · σβ · σ = α · β + iα× β · σ.

3. Prove that exp(−iθσ · n/2) = cos(θ/2) − in · σ sin(θ/2), where n · n = 1.

4. Prove exp(−iθσ ·n/2)σ ·n′ exp(iθσ ·n/2) = σ ·n′′, where n ·n = n′ ·n′ = 1 and
where n′′ = cos θ n′ +n ·n′(1− cos θ)n+sin θ n×n′. Interpret geometrically.

5. Prove exp(−i2πn · T ) = (−1)2j where n · n = 1 and T 2 = j(j + 1).
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II. SU(3)

The preceding review of SU(2) will be central to the understanding of Lie
algebras in general. As an illustrative example, however, SU(2) is not really ade-
quate. The Lie algebra of SU(3) is familiar to particle physicists and exhibits most
of the features of the larger Lie algebras that we will encounter later.

The group SU(3) consists of the unitary, three-by-three matrices with deter-
minant equal to unity. The elements of the group are obtained by exponentiating
iM , where M is a traceless, three-by-three, hermitian pmatrix. There are eight
linearly independent matrices with these properties.
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One choice for these is the λ matrices of Gell-Mann:

λ1 =







0 1 0

1 0 0

0 0 0






, λ2 =







0 −i 0

i 0 0

0 0 0






, λ3 =







1 0 0

0 −1 0

0 0 0






,

λ4 =







0 0 1

0 0 0
1 0 0






, λ5 =







0 0 −i

0 0 0

i 0 0






, λ6 =







0 0 0

0 0 1

0 1 0






, (II.1)

λ7 =







0 0 0

0 0 −i

0 i 0






, λ8 =

1√
3







1 0 0

0 1 0

0 0 −2






.

The first three are just the Pauli matrices with an extra row and column
added. The next four also have a similarity to σx and σy. To exploit this similarity
we define

Tx = 1
2λ1 , Ty = 1

2λ2 , Tz = 1
2λ3 ,

Vx = 1
2λ4 , Vy = 1

2λ5 ,

Ux = 1
2λ6 , Uy = 1

2λ7 , Y =
1√
3
λ8 . (II.2)

There is no Uz or Vz because there are only two linearly independent diagonal
generators. By historical tradition, they are chosen to be Tz and Y . Just as with
SU(2), it is convenient to work with the complex combinations

T± = Tx ± iTy, V± = Vx ± iVy, U± = Ux ± iUy . (II.3)

It is straightforward to compute all the commutation relations between the eight
generators. See Table II.1. We can consider these commutation relations to de-
fine the abstract Lie algebra of SU(3). That is, a representation of SU(3) is a
correspondence tz → Tz, t+ → T+, t− → T−, u+ → U+, etc. which preserves
the commutation relations given in Table II.1. The three-by-three matrices given
above form one representation, but as is well-known, there are six dimensional, eight
dimensional, ten dimensional representations, etc.
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Table II.1

The SU(3) commutation relations. The label on the row gives the first entry
in the commutator and the column label gives the second.

t+ t− tz u+ u− v+ v− y

t+ 0 2tz −t+ v+ 0 0 −u− 0

t− −2tz 0 t− 0 −v− u+ 0 0

tz t+ −t− 0 − 1
2u+

1
2u−

1
2v+ − 1

2v− 0

u+ −v+ 0 1
2u+ 0 3

2y − tz 0 t− −u+

u− 0 v− − 1
2u− − 3

2y + tz 0 −t− 0 u−

v+ 0 −u+ − 1
2v+ 0 t− 0 3

2y + tz −v+

v− u− 0 1
2v− −t− 0 − 3

2y − tz 0 v−

y 0 0 0 u+ −u− v+ −v− 0
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The eight dimensional representation is especially interesting. It can be ob-
tained in the following fashion. We seek a mapping of the generators t+, t−, tz , u+,
etc. into linear operators which act on some vector space. Let that vector space be
the Lie algebra, L, itself, that is, the space of all linear combinations of t′s, u′s,
etc. With tz we associate the following linear transformation. Let x ∈ L and take

x → [tz, x] . (II.4)

We call this linear transformation ad tz. More generally, if x, y ∈ L, ad y(x) =
[y, x] .

Now the mapping y → ad y is just what we want. It associates with each
element y in the Lie algebra, a linear tranformation, namely ad y. To see that this
is a representation, we must show it preserves the commutation relations, that is,
if [x, y] = z it must follow that [adx, ad y] = ad z. (It is worth noting here that the
brackets in the first relation stand for some abstract operation, while those in the
second indicate ordinary commutation.) This is easy to show:

[adx, ad y]w = [x, [y, w]] − [y, [x, w]]

= [x, [y, w]] + [y, [w, x]]

= − [w, [x, y]]

= [[x, y] , w] = [z, w]

=ad z(w) . (II.5)

In the third line the Jacobi identity was used.

This representation is eight dimensional since L is eight dimensional. The
operators adx can be written as eight-by-eight matrices if we select a particular
basis. For example, if the basis for L is t+, t−, tz , u+, u−, v+, v−, and y (in that
order), the pmatrix for ad t+ is found to be (using Table II.1)
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ad t+ =





































0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





































, (II.6)

while that for ad tz is

ad tz =





































1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 − 1
2 0

0 0 0 0 0 0 0 0





































. (II.7)

Both ad tz and ad y are diagonal. Thus if x = atz + b y, then adx is diagonal.
Explicitly,we find

adx =





































a 0 0 0 0 0 0 0

0 −a 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 − 1
2a + b 0 0 0 0

0 0 0 0 1
2a − b 0 0 0

0 0 0 0 0 1
2a + b 0 0

0 0 0 0 0 0 − 1
2a − b 0

0 0 0 0 0 0 0 0





































. (II.8)

In other words, t+, t−, tz, u+, u−, v+, v−, and y are all eigenvectors of adx with
eigenvalues a,−a, 0,− 1

2a + b, 1
2a − b, 1

2a + b,− 1
2a − b, and 0 respectively.
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The procedure we have followed is central to the analysis of larger Lie alge-
bras. We have found a two dimensional subalgebra (all linear combinations of tz
and y) which is abelian (that is, if x and y are in the subalgebra, [x, y] = 0). We
have chosen a basis for the rest of the Lie algebra so that each element of the basis
is an eigenvector of adx if x is in the subalgebra (called the Cartan subalgebra).
It is for this reason that we chose to work with t+ and t− rather than tx and ty, etc.

Once we have selected the Cartan subalgebra, H , the determination of the
eigenvectors of adx for x ∈ H does not depend on a specific choice of basis for H .
That is, we could choose any two linearly independent combinations of tz and y as
the basis for H . Of course, the eigenvectors are not uniquely determined, but are
determined only up to a multiplicative constant: if u+ is an eigenvector of adx,
then so is cu+, where c is a number. The eigenvalues, however, are completely
determined, since, for example, u+ and cu+ have the same eigenvalue.

These eigenvalues depend, of course, on what x is. Specifically, we have

ad (atz + by)t+ = at+

ad (atz + by)t− = −at−

ad (atz + by)tz = 0tz

ad (atz + by)u+ = (− 1
2a + b)u+

ad (atz + by)u− = (1
2a − b)u−

ad (atz + by)v+ = (1
2a + b)v+

ad (atz + by)v− = (− 1
2a − b)v−

ad (atz + by)y = 0y . (II.9)

The eigenvalues depend on x in a special way: they are linear functions of x. We
may write

αu+
(atz + by) = − 1

2a + b , (II.10)
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etc. The functions αu+
are linear functions which act on elements of the Cartan

subalgebra, H , and have values in the complex numbers. The mathematical term for
a linear function which takes a vector space, V (here V is H , the Cartan subalgebra)
into the complex numbers is a functional. The linear functionals on V comprise a
vector space called the dual space , denoted V ∗. Thus we say that the functionals
α lie in H∗. These functionals, α, are called roots and the corresponding generators
like u+ are called root vectors.

The concept of a dual space may seem excessively mathematical, but it is
really familiar to physicists in a variety of ways. If we consider a geometrical
vector space, say the three-dimensional vectors, there is a well-defined scalar (dot)
product. Thus if a and b are vectors, a · b is a number. We can think of a· as an
element in the dual space. It acts on vectors to give numbers. Moreover, it is linear:
a·(b + c) = a · b + a · c. A less trivial example is the bra-ket notation of Dirac: | 〉
represents vectors in the space V , 〈| represents vectors in the dual space, V ∗.
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References

SU(3) is familiar to particle physicists and is presented in many texts. Partic-
ularly notable presentations are found in GASIOROWICZ and in CARRUTHERS.

Exercises

1. Show that λ1, λ2, and λ3 close among themselves under the commutation
relations, that is that they generate an SU(2) subalgebra. Show the same is
true for λ2, λ5, and λ7.

2. Show that

∑

i

λi
abλ

i
cd = −1

3

∑

i

λi
adλ

i
cb +

16

9
δadδcb .
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III.The Killing Form

A fundamental step in the analysis of Lie algebras is to establish a geometrical
picture of the algebra. We shall eventually see how this geometry can be developed
in terms of the roots of the algebra. Before turning to the roots, we must first
define something resembling a scalar product for elements of the Lie algebra itself.
We shall state our definitions for an arbitrary Lie algebra and illustrate them with
SU(3).

Let L be a Lie algebra and let a, b ∈ L. The Killing form is defined by

(a, b) = Tr ad a ad b . (III.1)

Remember that ad a is an operator which acts on elements of L and maps them
into new elements of L. Thus the indicated trace can be evaluated by first taking
a basis for L, say x1, x2, . . .. Then we calculate for each xj , the quantity [a, [b, xj ]]
and express the result in terms of the xi’s. The coefficient of xj is the contribution
to the trace. It is easy to show that the trace is independent of the choice of basis.
As an example of the Killing form, consider SU(3). Using Table II.1 we see that
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(tz , tz) = 3. (III.2)

This can be calculated simply using the matrix representation of the operator ad tz,
Eq. (II.7), or more tediously

[tz, [tz , tz]] =0 , [tz, [tz, u+]] = 1
4u+

[tz, [tz, y]] =0 , [tz, [tz, u−]] = 1
4u−

[tz, [tz, t+]] =t+ , [tz, [tz, v+]] = 1
4v+

[tz, [tz , t−]] =t− , [tz, [tz , v−]] = 1
4v− . (III.3)

It is easy to see that a term like (tz, t+) must vanish. From Table II.1 we see
that ad tz ad t+ (tz) = −t+ and hence gives no contribution to (tz , t+), etc. If we
take the Killing form between two of our basis elements, only a few are non-zero:

(tz, tz) =3 , (y, y) = 4 , (t+, t−) = 6 ,

(v+, v−) =6 , (u+, u−) =6 . (III.4)

The Killing form is not a scalar product. In particular it is not positive definite. For
example, since we are considering complex combinations of the SU(3) generators,
we can calculate (iy, iy) = −4.

There is a scalar product associated with the Lie algebra, but it is not defined
on the Lie algebra itself, but rather on the space containing the roots. We recall
that the roots live in a space called H∗, the dual space to the Cartan subalgebra,
H . Often we can restrict ourselves to the space H∗

0 , the real, linear combinations
of the roots.
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The Killing form enables us to make a connection between the Cartan sub-
algebra, H , and its dual H∗.1 If ρ ∈ H∗, there exists a unique element hρ ∈ H such
that for every k ∈ H ,

ρ(k) = (hρ, k) . (III.5)

This unique connection between H and H∗ occurs not for all Lie algebras
but only for the class of semi-simple Lie algebras which are the ones we shall be
mostly concerned with. For semi-simple Lie algebras the Killing form, as we shall
see, is non-degenerate. This means, in particular, that if (a, b) = 0 for every b ∈ H ,
then a = 0. More prosaically, non-degeneracy means that if x1, x2 . . . is a basis for
H , then the matrix (xi, xj) can be inverted. Thus the values of (a, xj) completely
determine a.

This one-to-one relationship between H and H∗ can be illustrated with
SU(3). Referring to Eqs. (II.9) and (II.10), we designate three non-zero roots by

α1(atz + by) = a

α2(atz + by) = − 1
2a + b

α3(atz + by) = 1
2a + b . (III.6)

The other non-zero roots are the negatives of these. Now we determine the
elements in H corresponding to α1, α2, and α3. Each of these h’s is to lie in H and
is thus of the form

hαi
= citz + diy . (III.7)

Using the previously computed values of the Killing form, Eq. (III.4), we see that

(hαi
, tz) =3ci

(hαi
, y) =4di . (III.8)



20 III. Killing Form

To determine the coefficients ci and di, we combine the definition of hα,
Eq. (III.5), with the expressions for the roots, Eq. (III.6):

α1(tz) =1 = (hα1
, tz) = 3c1 ,

α1(y) =0 = (hα1
, y) = 4d1 ,

α2(tz) = − 1
2 = (hα2

, tz) =3c2 ,

α2(y) =1 = (hα2
, y) = 4d2 ,

α3(tz) = 1
2 = (hα3

, tz) = 3c3 ,

α3(y) =1 = (hα3
, y) = 4d3 . (III.9)

Thus we find the elements of H which correspond to the various roots:

hα1
= 1

3 tz ; hα2
= − 1

6 tz + 1
4y; hα3

= 1
6 tz + 1

4y . (III.10)

Of course, this correspondence is linear. It would have sufficed to determine hα1

and hα2
and then noted that since α3 = α1 + α2, hα3

= hα1
+ hα2

. Indeed, using
Eq. (III.10) we can find the element of H which corresponds to any element of H∗

since such elements can be expressed in terms of, say, α1 and α2.

We are now in a position to display the previously advertised scalar product.
Let α and β be real linear combinations of the roots, that is, α, β ∈ H∗

0 and let hα

and hβ be the elements in H associated with them according to Eq. (III.5). Then
we define a product on H∗

0 by

〈α, β〉 ≡ (hα, hβ) . (III.11)

For the particular case of SU(3), using Eq. (III.4), we have
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〈α1, α1〉 =(hα1
, hα1

) =(1
3 tz ,

1
3 tz) = 1

3

〈α2, α2〉 =(hα2
, hα2

) =1
3

〈α3, α3〉 =(hα3
, hα3

) =1
3

〈α1, α2〉 =(hα1
, hα2

) = − 1
6

〈α1, α3〉 =(hα1
, hα3

) =1
6

〈α2, α3〉 =(hα2
, hα3

) =1
6 . (III.12)

From these specific values, we can see that for SU(3), 〈, 〉 provides a scalar
product on the root space, H∗

0 . Indeed, we can interpret Eq. (III.12) geometrically
by representing the roots by vectors of length 1/

√
3. The angles between the vectors

are such that cos θ = ± 1
2 as shown in Fig. III.1.

∖/

/∖

Fig. III.1

It is important to note that 〈, 〉 is quite different from ( , ). There is no
“natural” basis for the Cartan subalgebra so some of the symmetry is not apparent.
Thus we found (tz, tz) = 3, but (y, y) = 4. Moreover, we might as well have chosen
iy instead of y and found (iy, iy) = −4. There are naturally distinguished elements
of H∗, namely the roots. As a result, the product on H∗ displays more clearly the
symmetry of the Lie algebra.
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So far we have limited our discussion to the Lie algebras of SU(2) and SU(3)
(or, more precisely, their complex extensions). Let us now generalize this and
explain the terms “simple” and “semi-simple”.

Suppose L is a Lie algebra. A subalgebra, M, is simply a subspace of
L which is closed under the Lie product. For example, tz, t+, and t− generate a
subalgebra of SU(3) which is indeed isomorphic (equivalent) to SU(2). Symbolically,
if M is a subalgebra and x, y ∈ M , then [x, y] ∈ M . An ideal is a special kind of
subalgebra. If J is an ideal, and x ∈ J and y is any element of L, then [x, y] ∈ J .
If J were only a subalgebra instead of an ideal, we would have to restrict y to be in
J rather than just in L.

As an example, consider the group U(3), the set of all three-by-three unitary
matrices. We can think of its Lie algebra as being the set of all Hermitian three-
by-three matrices. This is the same as for SU(3) except that the matrices need
not be traceless. Thus we might take for a basis, the eight matrices displayed in
Eq. (III.1), plus the three-by-three identity matrix.

Now consider the one-dimensional space spanned by the identity matrix, that
is, the space given by multiples of the identity. This space, J , is an ideal because if
x ∈ J and y is any element of the Lie algebra, [x, y] = 0 ∈ J . In fact, if we consider
the space of all traceless matrices, J ′, we see that it too is an ideal. This follows
since the trace of a commutator is necessarily traceless. Thus every element in U(3)
can be written as a sum of one element from J and one element from J ′. The full
algebra is the sum of the two ideals.

A Lie algebra which has no ideals (except the trivial ones comprising the full
algebra itself or the ideal consisting solely of 0) is called simple. A subalgebra in
which all members commute is called abelian. An algebra with no abelian ideals
is called semi-simple. Thus the Lie algebra of SU(3) is simple, while that of U(3)
is neither simple nor semi-simple.

A semi-simple Lie algebra is the sum of simple ideals. Consider, for example,
the five-by-five traceless hermitian matrices which are zero except for two diagonal
blocks, one three-by-three and one two-by-two. Suppose we consider only matrices
where each of these two blocks is separately traceless. The resulting set is a Lie
algebra which can be considered the sum of two ideals, one of which is isomorphic
to SU(2) and the other of which is isomorphic to SU(3). If we require only that the
sum of the traces of the two diagonal blocks vanish, the resulting algebra is larger,
including matrices proportional to one whose diagonal elements are 1

3 , 1
3 , 1

3 ,− 1
2 ,− 1

2 .
This element and its multiples form an abelian ideal so this larger algebra (SU(3)×
SU(2) × U(1)) is not semi-simple.
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Because semi-simple Lie algebras are simply sums of simple ones, most of
their properties can be obtained by first considering simple Lie algebras.

There is an intimate relationship between the Killing form and semi-simplicity:
the Killing form is non-degenerate if and only if the Lie algebra is semi-simple. It
is not hard to prove half of this fundamental theorem 2(which is due to Cartan): if
the Killing form is non-degenerate, then L is semi-simple. Suppose L is not semi-
simple and let B be an abelian ideal. Let b1, b2, . . . be a basis for B. We can extend
this to a basis for the full algebra L by adding y1, y2, . . . where yi /∈ B. Now let
us calculate (b1, a) where a ∈ L. First consider [b1, [a, bj ]]. The inner commutator
lies in B since B is an ideal. But then the second commutator vanishes since B
is abelian. Next consider [b1, [a, yj ]] The final result must lie in B since b1 ∈ B so
its expansion has no components along the yk’s and along yj in particular. Thus
there is no contribution to the trace. The trace vanishes and the Killing form is
degenerate.
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Footnotes

1. We follow here JACOBSON, p. 110.

2. JACOBSON, pp. 69–70.

Exercise

1. Define a bilinear form on SU(3) using the three-dimensional representation
as follows. Let x and y be a linear combination of the matrices in Eq. (II.1)
and define ((x, y)) = Tr xy. Compare this with the Killing form, i.e. (x, y) =
Tr ad xad y. It suffices to consider x and y running over some convenient
basis.
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IV. The Structure of Simple Lie Algebras

Our study of the Lie algebra of SU(3) revealed that the eight generators could
be divided up in an illuminating fashion. Two generators, tz and y, commuted with
each other. They formed a basis for the two dimensional Cartan subalgebra. The
remaining generators, u+, u−, v+, v−, t+, and t− were all eigenvectors of ad tz and
ad y, that is, [tz , u+] was proportional to u+, etc. More generally, each of the six was
an eigenvector of ad h for every h ∈ H . The corresponding eigenvalue depended
linearly on h. These linear functions on H were elements of H∗, the dual space of
H . The functions which gave the eigenvalues of ad h were called roots and the real
linear combinations of these roots formed a real vector space, H∗

0 .

The SU(3) results generalize in the following way. Every semi-simple Lie
algebra is a sum of simple ideals, each of which can be treated as a separate simple
Lie algebra. The generators of the simple Lie algebra may be chosen so that one
subset of them generates a commutative Cartan subalgebra, H . The remaining
generators are eigenvectors of ad h for every h ∈ H . Associated with each of these
latter generators is a linear function which gives the eigenvalue. We write
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(ad h)eα = α(h)eα . (IV.1)

This is the generalization of Eq. (II.9) where we have indicated generators like
u+, u−, etc., generically by eα.

The roots of SU(3) exemplify a number of characteristics of semi-simple Lie
algebras in general. First, if α is a root, so is −α. This is made explicit in
Eq. (II.9), where we see that the root corresponding to t− is the negative of that
corresponding to t+, and so on. Second, for each root, there is only one linearly
independent generator with that root. Third, if α is a root, 2α is not a root.

How is the Cartan subalgebra determined in general? It turns out that the
following procedure is required. An element h ∈ L is said to be regular if adh has
as few zero eigenvalues as possible, that is, the multiplicity of the zero eigenvalue
is minimal. In the SU(3) example, from Eq. (II.8) we see that ad tz has a two
dimensional space with eigenvalue zero, while ad y has a four dimensional space of
this sort. The element tz is regular while y is not. A Cartan subalgebra is obtained
by finding a maximal commutative subalgebra containing a regular element. The
subalgebra generated by tz and y is commutative and it is maximal since there is
no other element we can add to it which would not destroy the commutativity.

If we take as our basis for the algebra the root vectors, eα1
, eα2

. . . plus
some basis for the Cartan subalgebra, say h1, h2 . . ., then we can write a matrix
representation for adh:
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ad h =





































0

0

.

0

α1(h)

α2(h)

.

.

αn(h)





































. (IV. 2)

From this we can see that the Killing form, when acting on the Cartan subalgebra
can be computed by

(h1, h2) =
∑

α∈Σ

α(h1)α(h2) , (IV.3)

where Σ is the set of all the roots.

We know the commutation relations between the root vectors and the mem-
bers of the Cartan subalgebra, namely Eq. (IV.1). What are the commutation
relations between the root vectors? We have not yet specified the normalization of
the eα’s , so we can only answer this question up to an overall constant.

Let us use the Jacobi identity on [eα, eβ ]:

[h, [eα, eβ]] = − [eα, [eβ , h]] − [eβ, [h, eα]]

=β(h) [eα, eβ ] + α(h) [eα, eβ]

= (α(h) + β(h)) [eα, eβ] . (IV.4)

This means that either [eα, eβ ] is zero, or it is a root vector with root α + β, or
α + β = 0 , in which case [eα, eβ ] commutes with every hand is thus an element of
the Cartan subalgebra.
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It is easy to show that (eα, eβ) = 0 unless α + β = 0. This is simply a
generalization of the considerations surrounding Eq. (III.3). We examine [eα, [eβ , x]]
where x is some basis element of L, either a root vector or an element of the Cartan
subalgebra. If x ∈ H , the double commutator is either zero or proportional to a
root vector eα+β. In either case, there is no contribution to the trace. If x is a root
vector, say x = eγ , the double commutator is either zero or of the form eα+β+γ ,
and thus does not contribute to the trace unless α + β = 0.

We have seen that [eα, e−α] must be an element of the Cartan subalgebra. We
can make this more explicit with a little calculation. First we prove an important
property, invariance, of the Killing form:

(a, [b, c]) = ([a, b] , c) , (IV.5)

where a, b, and c are elements of the Lie algebra. The proof is straightforward:

(a, [b, c]) =Tr ad aad [b, c]

=Tr ad a [ad b, ad c]

=Tr [ad a, ad b] ad c

=Tr ad [a, b]ad c

=([a, b] , c) . (IV.6)

Now we use this identity to evaluate ([eα, e−α] , h) where h is some element of the
Cartan subalgebra.

([eα, e−α] , h) =(eα, [e−α, h])

=α(h)(eα, e−α) . (IV.7)

Both sides are linear functions of h. Referring to Eq. (III.5), we see that [eα, e−α]
is proportional to hα , where hα has the property

(hα , k) = α(k), hα , k ∈ H . (IV.8)

More precisely, we have
[eα, e−α] = (eα, e−α)hα . (IV.9)
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This is, of course, in accord with our results for SU(3). As an example,
let eα = u+, e−α = u−. From Table II.1, we see that [u+, u−] = 3y/2 − tz. From
Eq. (III.4), (u+, u−) = 6, while from Eqs. (III.6), (III.10), and (II.9), we find that
hu+

= y/4 − tz/6. Thus indeed, [u+, u−] = (u+, u−)hu+
.

The Killing form is the only invariant bilinear form on a simple Lie algebra,
up to trivial modification by multiplication by a constant. To demonstrate this,
suppose that (( , )) is another such form. Then

((hβ , [eα, e−α])) = ((hβ , (eα, e−α)hα))

= (eα, e−α)((hβ , hα))

= (([hβ, eα] , e−α))

= (hβ , hα)((eα, e−α)) . (IV.10)

Thus ((hβ , hα))/(hβ , hα) = ((eα, e−α))/(eα, e−α) and this ratio is independent of α
as well. Thus we can write

((hβ , hα))

(hβ , hα)
= k =

((eα, e−α))

(eα, e−α)
. (IV.11)

In a simple algebra, we can start with a single root, α, and proceed to another
root, β such that (hβ , hα) 6= 0 and continue until we have exhausted the full set of
roots, so a single value of k holds for the whole algebra. Separate simple factors of
a semi-simple algebra may have different values of k however.

We can summarize what we have thus far learned about the structure of
semi-simple Lie algebras by writing the commutation relations. We indicate the set
of roots by Σ and the Cartan subalgebra by H :
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[h1, h2] =0 , h1, h2 ∈ H

[h, eα] =α(h)eα , α ∈ Σ

[eα, eβ] =Nαβeα+β , α + β ∈ Σ

=(eα, e−α)hα , α + β = 0

=0 , α + β 6= 0 , α + β /∈ Σ . (IV.12)

Here Nαβ is some number depending on the roots α and β which is not yet deter-
mined since we have not specified the normalization of eα.

References

A rigorous treatment of these matters is given by JACOBSON.

Exercise

1. Show that atz + by is almost always regular by finding the conditions on a
and b such that it is not regular.

2. Show that invariant bilinear symmetric forms are really invariants of the Lie
group associated with the Lie algebra.
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V. A Little about Representations

There is still a great deal to uncover about the structure of simple Lie al-
gebras, but it is worthwhile to make a slight detour to discuss something about
representations. This will lead to some useful relations for the adjoint represen-
tation (c.f. Eqs. (II.4) and (II.5)) and thus for the structure of the Lie algebras
themselves.

The study of representations of Lie algebras is based on the simple principles
discussed in Chapter I. The reason for this is that the elements eα, e−α, and hα

have commutation relations

[hα , eα] =α(hα)eα = (hα , hα)eα = 〈α, α〉eα ,

[hα , e−α] = − 〈α, α〉eα ,

[eα, e−α] =(eα, e−α)hα , (V.1)

which are just the same as those for t+, t−, and tz, except for normalization.Thus
for each pair of roots, α , and -α ,there is an SU(2) we can form. What makes the
Lie algebras interesting is that the SU(2)’s are linked together by the commutation
relations
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[eα, eβ] = Nαβeα+β , α + β ∈ Σ . (V.2)

We recall that a representation of the Lie algebra is obtained when for each
element of the algebra we have a linear transformation (i.e. a matrix) acting on
a vector space (i.e. column vectors) in a way which preserves the commutation
relations. If we indicate the representation of a, b, and c by A, B, and C, then

[a, b] = c → [A, B] = C . (V.3)

Let us continue to use this notation so that if h1, h2, . . . is a basis for the
Cartan subalgebra H , we will indicate their representatives by H1, H2, . . . .Similarly,
the representatives of eα will be Eα. The transformations Hi and Eα act on vectors
φa in a space, V . Since the h’s commute, so do the H ’s. We can choose a basis for
the space V in which the H ’s are diagonal (The representation is in particular a
representation for the SU(2) formed by Hα, Eα, E−α. We know how to diagonalize
Hα. But all the Hα’s commute so we can diagonalize them simultaneously.):

Hiφ
a = λa

i φa . (V.4)

The eigenvalues λa
i depend linearly on the H ’s.Thus if h =

∑

i cihi so that H =
∑

i ciHi, then

Hφa =

(

∑

i

ciλ
a
i

)

φa

≡Ma(h)φa . (V.5)

We can regard the eigenvalue associated with this vector, φa, to be a linear function
defined on H :
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Ma

(

∑

i

cihi

)

=
∑

i

ciλ
a
i . (V.6)

The functions Ma are called weights. As linear functionals on H , they are
members of the dual space, H∗, just as the roots,α, are. We shall see later that the
weights can be expressed as real (in fact, rational) linear combinations of the roots.
We can use the product 〈, 〉 we defined on the root space also when we deal with
the weights.

A simple example of Eq. (V.5) is given by the three dimensional representa-
tion of SU(3), Eqs. (II.1) and (II.2).

Tz =







1
2

− 1
2

0






, Y =







1
3

1
3

− 2
3






. (V.7)

The weight vectors of the three dimensional representation are

φa =







1

0

0






, φb =







0

1

0






, φc =







0

0

1






. (V.8)

We consider the action of H = aTz + bY on the weight vectors to find the weights:

Hφa =(1
2a + 1

3 b)φa = Ma(atz + by)φa ,

Hφb =(− 1
2a + 1

3b)φb = M b(atz + by)φb ,

Hφc =(− 2
3b)φc = M c(atz + by)φc . (V.9)

The weights can be expressed in terms of the roots of SU(3), Eq. (III.6). Only two
of the roots are linearly independent so we need use only two of them, say α1and α2.
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Then

Ma = + 2
3α1 + 1

3α2 ,

M b = − 1
3α1 + 1

3α2 ,

M c = − 1
3α1 − 2

3α2 . (V.10)

In SU(2), T+and T− act as raising and lowering operators. This concept may
be generalized in the following way. Suppose that φa is a weight vector with weight
Ma. Then Eαφa is a weight vector with weight Ma + α unless Eαφa = 0:

HEαφa =(EαH + α(h)Eα)φa

=(Ma(h) + α(h)) Eαφa . (V.11)

Thus we can think of the Eα as raising operators and the E−α as lowering operators.

If M is a weight, then it lies in a string of weights M∗, M∗−α, . . . , M, . . . ,
M∗ − qα. Let us see how q is determined by M∗. Let φ0 be a weight vector with
weight M∗. Then, if it is non-zero, the vector

(E−α)
j
φ0 = φj (V.12)

is a weight vector with weight M∗ − jα. On the other hand, Eαφk has weight
M∗ − (k − 1)α, and is proportional to φk−1. We can find q by using the relation

E−αφq = 0 . (V.13)

The calculation is simplified by choosing a convenient normalization for the
generators eαand e−α : (eα, e−α) = 1. Thus

[eα, e−α] = hα . (V.14)
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In terms of the representation, then

[Eα, E−α] = Hα . (V.15)

We shall also need the relation (see Eq. (III.5))

M(hα) = (hM , hα) = 〈M, α〉 . (V.16)

By analogy with our treatment of SU(2), we define

Eαφk = rkφk−1 (V.17)

and seek a recursion relation. We find

Eαφk =rkφk−1

=EαE−αφk−1

=(E−αEα + Hα)φk−1

=rk−1φk−1 + [M∗(hα) − (k − 1)α(hα)]φk−1

=[rk−1 + 〈M∗, α〉 − (k − 1)〈α, α〉]φk−1 . (V.18)

The solution to the recursion relation which satisfies r0 = 0 is

rk = k〈M∗, α〉 − 1
2k(k − 1)〈α, α〉 . (V.19)

Now from Eq. (V.13) we know that

EαE−αφq = 0 = rq+1φq (V.20)

so we have found q in terms of M∗ and α :

q =
2〈M∗, α〉
〈α, α〉 . (V.21)
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In practice, we often have a weight, M , which may or may not be the highest
weight in the sequence M + pα, . . . M, . . . M − mα. We can obtain an extremely
useful formula for m − p by using Eq. (V.21):

m + p =
2〈M + pα, α〉

〈α, α〉

m − p =
2〈M, α〉
〈α, α〉 . (V.22)

As an example, let us consider the three dimensional representation of SU(3).
Now suppose we wish to find the string of weights spaced by α1 containing the weight
Ma = 2

3α1 + 1
3α2. Using the table of scalar products in Eq. (III.12), we compute

m − p =
2〈2

3α1 + 1
3α2, α1〉

〈α1, α1〉
= 1 . (V.23)

In fact, m = 1 and p = 0.

So important is Eq. (V.22) that it is worthwhile to pause for a geometrical
interpretation. Suppose the number of weights in the string is odd. Then there
is a central weight, M0, such that p = m and 〈M0, α〉 = 0. This suggests the
existence of a symmetry, a reflection which acts about the mid-point. If the full
string is M∗, M∗ − α, . . . M∗ − qα, this symmetry would relate the weights M =
M∗ − jα and M ′ = M∗ − (q − j)α = M − (q − 2j)α. Using Eq. (V.22) with
p = j and m = q − j, we see that q − 2j = 2〈M, α〉/〈α, α〉. Thus the symmetry
among the weights can be expressed by

Sα : M → M − 2〈M, α〉
〈α, α〉 α . (V.24)

It is clear that this works similarly if the string is even. In either event, Sα maps
weights into weights.
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This symmetry is called a Weyl reflection. If we consider elements made
up of any number of reflections, these elements form a group called the Weyl

group. The Weyl group maps weights into weights. Associated with each weight
is a weight space consisting of all weight vectors with a given weight. For an
irreducible representation of SU(2), each weight space is one dimensional, but in
general this is not so.

If we consider a string of weights, M∗, . . . M∗−qα, and the associated weight
spaces, we can restrict our consideration to the subalgebra generated by eα, e−α, and
hα . This SU(2) subalgebra is represented by Eα, E−α, and Hα. The representation
of SU(2) on the weight spaces associated with the string is in general reducible. It
contains at least one copy of the 2q + 1 dimensional representation of SU(2). In
addition, there may be other representations of lesser dimension. Each of these
representations will be arranged symmetrically with respect to the reflection Sα

with the result that Sα will map a weight M into a weight M ′ whose weight space
has the same dimension.

The symmetry of some SU(3) representations is apparent in Fig. V.1.

Fig. V.1
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References

The material is standard. See, for example, JACOBSON, pp. 112–119.

Exercise

1. Find the elements of the Weyl group for SU(3) and their multiplication table.
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VI. More on the Structure of Simple Lie Algebras

In this Chapter we shall use the results on representations just obtained to
learn about the algebras themselves by considering the adjoint representation. In
the adjoint representation, the Lie algebra itself serves as the vector space on which
the E’s and H ’s act. Thus if x is an element of the Lie algebra L, then eα is
represented by Eα where

Eαx = ad eα(x) . (VI.1)

Before studying the adjoint representation, let us first state a few properties of
simple (and semi-simple) Lie algebras which may sound intuitive or obvious, but
which require real mathematical proof. As is often the case, it is these innocent
sounding statements which are the most difficult to prove and we omit their proofs,
which may be found in standard mathematical texts.

First, if α is a root, then 〈α, α〉 6= 0. While we have asserted that 〈 , 〉 will
become a scalar product on the root space, we have not proved it. In fact, we shall
prove it later, based on the assumption that 〈α, α〉 6= 0.
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Second, if α is a root, then the only multiples of α which are roots are α, −α,
and 0. We can show that −α must be a root because (eα, eβ) = 0 unless α +β = 0,
and we cannot have (eα, x) = 0for every x in the Lie algebra, because then the
Lie algebra would not be semi-simple (see Chapter III ). It might be thought that
to show that 2α is not a root would be simple, since e2α might arise from [eα, eα]
which is certainly zero. However, this proves nothing since e2α might arise from,
say,[eα+β , eα−β]. Nevertheless, the result is true. In fact, if α, β, and α + β are
roots, then [eα, eβ] 6= 0.

Third, there is only one linearly independent root vector for each root. This
may be stated in terms of the adjoint representation: every weight space (except
the root zero space which is the Cartan subalgebra) is one dimensional.

The adjoint representation has other important properties. We know that
there is no limit to the length of a string of weights for a representation: even for
SU(2) we can have arbitrarily long strings, j, j − 1 . . . − j. However, in the adjoint
representation, a string can have no more than four weights in it. That is, a string of
roots can have no more than four roots in it. We shall see that this has far-reaching
consequences.

Suppose to the contrary, there is a string containing five roots which we label
without loss of generality β − 2α, β − α, β, β + α, and β + 2α. Since α is a root,
2α = (β + 2α)− β is not a root, nor is 2(β + α) = (β + 2α) + β. Thus β + 2α is in
a β-string of roots with only one element. Thus from Eq. (V.22)

〈β + 2α, β〉 = 0 . (VI.2)

Similarly,

〈β − 2α, β〉 = 0 . (VI.3)

But then 〈β, β〉 = 0, which is impossible. Geometrically, we see that β is perpen-
dicular to both β + 2α and β − 2α which is possible only if β = 0.

Now if the α-string containing β is four elements long, β +2α, β +α, β, β−α,
then m−p in Eq. (V.22) can be only ±3 or ±1. If the string is three elements long,
m− p can be only ±2 or 0. If it is two elements long, m− p is ±1, and if it is only
one element long, m − p is 0.
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We can obtain more information from the ubiquitous Eq. (V.22). Using it
twice, we write

〈α, β〉〈α, β〉
〈α, α〉〈β, β〉 = 1

4mn (VI.4)

where m and n are integers given by the appropriate values of m− p. We recognize
the left hand side as cos2 θ where θ is the angle between the vectors α and β.
Anticipating that we really have a scalar product, we use the Schwarz inequality to
assert that mn/4 must be less than unity unless α and β are proportional. Thus
cos2 θ can take on only the values 0, 1

4 , 1
2 , and 3

4 .

We shall later see how this restriction of permissible angles limits the possi-
bilities for simple Lie algebras. Indeed, we shall see that every simple Lie algebra
falls either into one of four sequences of “classical” algebras or is one of the five
“exceptional” Lie algebras first enumerated by Killing. Since every semi-simple
Lie algebra is a sum of simple Lie algebras, this will give an exhaustive list of the
semi-simple Lie algebras as well.

For the present, we pursue our analysis of the nature of roots of simple Lie
algebras. First we show that every root is expressible as a linear combination of
a basis set of roots with real, rational coefficients. Suppose α1, α2 . . . is a basis of
roots for H∗. (It is not hard to show the roots span H∗.) Let β be a root expressed
as β =

∑

i qiαi. Then

2
〈β, αj〉
〈αj , αj〉

=
∑

i

qi 2
〈αi, αj〉
〈αj , αj〉

. (VI.5)

This is a set of linear equations for qi. All the coefficients are rational and
indeed integers according to Eq. (V.22). Therefore, when we solve for the qi, they
will all be rational.

We can go further and show that 〈α, β〉 is rational when α and β are roots.
Using Eq. (IV.3), we have
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〈β, β〉 = (hβ , hβ)

=
∑

α∈Σ

α(hβ)α(hβ)

=
∑

α∈Σ

〈α, β〉2 . (VI.6)

The root α is in some β-string of roots, so 2〈α, β〉 = (m−p)α〈β, β〉 for some integral
(m − p)α. Thus

〈β, β〉 =
∑

α∈Σ

1
4 [(m − p)α]

2 〈β, β〉2,

=

(

∑

α∈Σ

1
4 [(m − p)α]

2

)−1

. (VI.7)

This shows that 〈β, β〉 is rational. Also, 〈α, β〉 = (m−p)α〈β, β〉/2 is rational.
We see, then, from Eq. (VI.7) that 〈 , 〉 is positive definite on the space of rational
linear combinations of roots. In particular, this means that 〈 , 〉 is a scalar product.

References

This is standard material. See, for example, JACOBSON, pp. 112–119.

Exercise

1. Assuming that for each root α there is only one linearly independent root
vector, show that if α, β, and α+β are roots, then [eα, eβ] 6= 0. Hint: consider
the adjoint representation and then the SU(2) generated by eα, e−α, and hα.
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VII. Simple Roots and the Cartan Matrix

The next step in analyzing the simple Lie algebras is to define an ordering
among the elements in the root space, the space H∗

0 of real linear combinations of
roots. This ordering is necessarily somewhat arbitrary: there is no natural ordering
in the root space. Nevertheless, we shall see that even an arbitrarily chosen ordering
can provide much useful information. Let α1, α2 . . . αn be a fixed basis of roots so
every element of H∗

0 can be written ρ =
∑

i ciαi. We shall call ρ positive (ρ > 0) if
c1 > 0, or if c1 = 0, we call ρ positive if c2 > 0, etc. If the first non-zero ci is negative
we call ρ negative. Clearly this ordering is possible only because we consider only
real linear combinations of roots rather than the full dual space, H∗. We shall write
ρ > σ if ρ − σ > 0.

Given the choice of an ordered basis, we can determine which roots are
positive and which are negative. A simple root is a positive root which cannot be
written as the sum of two positive roots. Let us consider SU(3) as an example.
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According to Eq. (III.6), the roots are

α1(atz + by) = a

α2(atz + by) = − 1
2a + b

α3(atz + by) = 1
2a + b (III.6)

and the negatives of these roots. Suppose we select as a basis for H∗
0 the roots

α1 and α3, in that order. Now since α2 = α3 − α1, α2 is negative. What are the
simple roots? The positive roots are α1,−α2, and α3. Now α1 = α3 + (−α2) so
α1 is the sum of two positive roots and is thus not simple. The simple roots are
−α2 and α3, and −α2 > α3. Of course, this depends on our original ordering of the
basis.

We denote the set of simple roots by Π and the set of all roots by Σ. One
very important property of the simple roots is that the difference of two simple
roots is not a root at all: α, β ∈ Π ⇒ α − β /∈ Σ. To see this, suppose that to
the contrary α − β is a root. Then either α − β or β − α is positive. Thus either
α = (α− β) + β or β = (β −α) + α can be written as the sum of two positive roots
which is impossible for simple roots.

If α and β are simple roots, then 〈α, β〉 ≤ 0. This follows from Eq. (V.22)
because β is a root, but β−α is not a root. Thus in Eq. (V.22), m = 0, so m−p ≤ 0.

From this result it is easy to show that the simple roots are linearly inde-
pendent. If the simple roots are not linearly independent we can write an equality

∑

αi∈Π

aiαi =
∑

αj∈Π

bjαj , ( VII.1)

where all the ai and bj are non-negative, and no simple root appears on both sides
of the equation. (If there were a relation

∑

i ciαi = 0 with all positive coefficients,
the roots αi could not all be positive.) Now multiplying both sides of Eq. (VII.1)
by
∑

i aiαi,
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〈
∑

i

aiαi,
∑

j

ajαj〉 = 〈
∑

i

aiαi,
∑

j

bjαj〉 . (VII.2)

The left hand side is positive since it is a square, but the right hand side is a sum of
negative terms. This contradiction establishes the linear independence of the simple
roots. Thus we can take as a basis for the root space the simple roots, since it is
not hard to show they span the space.

We now demonstrate a most important property of the simple roots: every
positive root can be written as a positive sum of simple roots. This is certainly true
for the positive roots which happen to be simple. Consider the smallest positive
root for which it is not true. Since this root is not simple, it can be written as the
sum of two positive roots. But these are smaller than their sum and so each can, by
hypothesis, be written as a positive sum of simple roots. Hence, so can their sum.

From the simple roots, we form the Cartan matrix, which summarizes all
the properties of the simple Lie algebra to which it corresponds. As we have seen,
the dimension of the Cartan subalgebra, H , is the same as that of H∗

0 , the root
space. This dimension, which is the same as the number of simple roots, is called
the rank of the algebra. For a rank n algebra, the Cartan matrix is the n × n
matrix

Aij = 2
〈αi, αj〉
〈αj , αj〉

(VII.3)

where αi, i = 1, . . . n are the simple roots.

Clearly, the diagonal elements of the matrix are all equal to two. The matrix
is not necessarily symmetric, but if Aij 6= 0, then Aji 6= 0. In fact, we have shown
(see the discussion preceeding Eq. (VI.4) ) that the only possible values for the off-
diagonal matrix elements are 0,±1,±2, and ± 3. Indeed, since the scalar product
of two different simple roots is non-positive, the off-diagonal elements can be only
0,−1,−2, and − 3.

We have seen that 〈 , 〉 is a scalar product on the root space. The Schwarz
inequality tells us that
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〈αi, αj〉2 ≤ 〈αi, αi〉〈αj , αj〉 , (VII.4)

where the inequality is strict unless αi and αj are proportional. This cannot happen
for i 6= j since the simple roots are linearly independent. Thus we can write

AijAji < 4, i 6= j . (VII.5)

It follows that if Aij = −2 or − 3, then Aji = −1.

Consider again the SU(3) example. For simplicity, (and contrary to our
choice above ) take the positive basis to be α1and α2. Then since α3 = α1 + α2,
the simple roots are also α1and α2. We computed the relevant scalar products in
Eq. (III.12):

〈α1, α1〉 = 1
3

〈α1, α2〉 = − 1
6

〈α2, α2〉 = 1
3 . (VII.6)

From this we compute the Cartan matrix

A =

[

2 −1

−1 2

]

. (VII.7)

The Cartan matrix, together with the ubiquitous Eq. (V.22), suffices to de-
termine all the roots of a given simple Lie algebra. It is enough to determine all
the positive roots, each of which can be written as a positive sum of simple roots:
β =

∑

i kiαi. We call
∑

i ki the level of the root β. Thus the simple roots are

at the first level. Suppose we have determined all the roots up to the nthlevel and

wish to determine those at the level n+1. For each root β at the nthlevel, we must
determine whether or not β + αi is a root.
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Since all the roots through the nthlevel are known, it is known how far back
the string of roots extends: β, β − αi, . . . β −mαi. From this, we can compute how
far forward the string extends:β, β + αi, . . . β + pαi. We just put our values into
Eq. (V.22):

m − p = 2
〈β, αi〉
〈αi, αi〉

=
∑

j

2kj

〈αj , αi〉
〈αi, αi〉

=
∑

j

kjAji . (VII.8)

In particular, β + αi is a root if p = m −∑j kjAji > 0 .

It is thus convenient to have an algorithm which keeps track of the n quanti-
ties

∑

j kjAji for each root as it is determined. It is clear that this is accomplished

by adding to the n quantities the jthrow of the Cartan matrix whenever the jthsimple
root is added to a root to form a new root.

Let us carry out this construction for SU(3). We begin by writing down the
Cartan matrix, then copying its rows to represent the simple roots:

[

2 −1

−1 2

]

2 −1 −1 2

1 1

Beginning with the root α1 we ask whether the addition of α2 produces a root in
the second level. (Remember that 2α1 cannot be a root, nor can α1 − α2). Since
the second entry in the box for the first root is negative, the corresponding value of
p in Eq. (VII.8) must be positive, so α1 + α2 is a root. The same conclusion would
be reached beginning with α2. Is there a root at level three? Looking back in the
α1 direction, m = 1. Since the first entry in the box for α1 + α2 is one, we have
p = 0 so we cannot add another α1. The same applies for α2. There are no roots
at the third level.
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As a slightly more complex example, we display the result for the exceptional
algebra G2, which we shall discuss at greater length later:

[

2 −3

−1 2

]

2 −3 −1 2

1 −1

0 1

−1 3

1 0

Not only does the Cartan matrix determine all of the roots, it determines
the full commutation relations for the algebra. To see this, let us introduce the
notation of Jacobson1. Start with any choice of normalization for eαand e−α. We
have shown that [eα, e−α] = (eα, e−α)hα . Now for every simple root, αi, define

ei = eαi

fi = e−αi
· 2 [(eαi

, e−αi
)〈αi, αi〉]−1

hi = hαi
· 2

〈αi, αi〉
. (VII.9)

By direct computation we find

[ei, fj ] = δijhj

[hi, ej ] = Ajiej

[hi, fj ] = −Ajifj . (VII.10)
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The commutator [ei, fj] vanishes unless i = j since it would be proportional to
eαi−αj

and αi − αj is not a root since αi and αj are simple.

A full basis for the Lie algebra can be obtained from the ei’s, fi’s and hi’s. All
of the raising operators can be written in the form ei1 , [ei1 , ei2 ] , [ei1 , [ei2 , ei3 ]] , etc.,
and similarly for the lowering operators constructed from the f ’s. Two elements
obtained from commuting in this way the same set of e’s, but in different orders,
are proportional with constant of proportionality being determined by the Cartan
matrix through the commutation relations in Eq. (VII.10). Among the various
orderings we choose one as a basis element. Following the same procedure for the
f ’s and adjoining the h’s we obtain a complete basis. The commutation relations
among them can be shown to be determined by the simple commutation relations
in Eq. (VII.10), that is, by the Cartan matrix.

The Cartan matrix thus contains all the information necessary to determine
entirely the corresponding Lie algebra. Its contents can be summarized in an elegant
diagrammatic form due to Dynkin. The Dynkin diagram of a semi-simple Lie
algebra is constructed as follows. For every simple root, place a dot. As we shall
show later, for a simple Lie algebra, the simple roots are at most of two sizes.

Darken the dots corresponding to the smaller roots. Connect the ithand jthdots by
a number of straight lines equal to AijAji. For a semi-simple algebra which is not
simple, the diagram will have disjoint pieces, each of which corresponds to a simple
algebra.

For SU(3) and G2, we have the Cartan matrices and Dynkin diagrams shown
below:

SU(3) = A2

[

2 −1

−1 2

]

h

α1

h

α2
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G2

[

2 −3

−1 2

]

h

α1

x

α2

The darkened dot for G2 corresponds to the second root, since the presence
of the (-3) in the second row indicates that the second root is the smaller.

In subsequent sections we will determine the full set of Dynkin diagrams
which represent simple Lie algebras. Here we anticipate the result somewhat in
order to demonstrate how the Cartan matrix and Dynkin diagrams determine each
other. Consider the Dynkin diagram:

h

α1

h

α2

x

α3

The Cartan matrix is determined by noting that A13 = A31 = 0, since the
first and third dots are not connected. Since one line connects the first and second
points, we must have A12 = A21 = −1. The second and third points are connected
by two lines so A23A32 = 2. Since the third root is smaller than the second, it must
be that A23 = −2 while A32 = −1. Thus we have







2 −1 0

−1 2 −2

0 −1 2
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Footnote

1. JACOBSON, p. 121.

References

Dynkin diagrams were first introduced in DYNKIN I. An excellent review of
much of the material presented in this and other chapters is found in the Appendix
to DYNKIN III.

Exercises

1. Find the Dynkin diagram for













2 −1 0 0

−1 2 −1 0

0 −2 2 −1

0 0 −1 2













.

2. Find all the roots of B2 whose Cartan matrix is

[

2 −2

−1 2

]

.

Draw a picture of the roots of B2 like that in Fig. III.1.

3. Draw a picture of the roots of G2 and compare with Fig. III.1.
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VIII. The Classical Lie Algebras

The general considerations of the previous chapter can be applied to the
most familiar simple Lie algebras, the classical Lie algebras, SU(n), SO(n), and
Sp(2n). These algebras are defined in terms of matrices and are simpler to visualize
than some of the exceptional Lie algebras we shall encounter soon. The explicit
construction of the Cartan subalgebra and the root vectors and roots for the classical
algebras should make concrete our earlier results.

The space of all n × n matrices has a basis of elements eab where the com-
ponents of eab are

(eab)ij = δaiδbj . (VIII.1)

Thus the multiplication rule for the matrices is

eabecd = eadδbc (VIII.2)
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and the commutator is
[eab, ecd] = eadδbc − ecbδad . (VIII.3)

The matrix I =
∑

i eii commutes with all the basis elements. It thus forms the basis
for a one-dimensional Abelian subalgebra. Consequently, the Lie algebra of all the
n×n matrices is not semi-simple. However, if we restrict ourselves to traceless n×n
matrices, we do obtain a semi-simple (in fact, simple) Lie algebra called An−1. This
is the complex version of SU(n).

The elements of An−1 are linear combinations of the eab’s for a 6= b and of
elements h =

∑

i λieii where
∑

i λi = 0. From Eq. (VIII.3) we find the commutation
relation

[h, eab] = (λa − λb)eab . (VIII.4)

Thus eab is a root vector corresponding to the root
∑

i λieii → λa − λb.

Let us choose as a basis for the root space

α1 :
∑

i

λieii → λ1 − λ2

α2 :
∑

i

λieii → λ2 − λ3

. . .

αn−1 :
∑

i

λieii → λn−1 − λn (VIII.5)

and declare these positive with α1 > α2 . . . > αn−1. It is easy to see that these
same roots are the simple roots.

In order to find the scalar product 〈 , 〉, we first determine the Killing form
as applied to elements of the Cartan algebra, using Eq. (IV.3) and Eq. (VIII.4):
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(

∑

i

λieii,
∑

j

λ′
jejj

)

= Tr ad

(

∑

i

λieii

)

ad





∑

j

λ′
jejj





=
∑

p,q

(λp − λq)(λ
′
p − λ′

q)

= 2n
∑

p

λpλ
′
p . (VIII.6)

The Killing form determines the connection between the Cartan subalgebra , H ,
and the root space H∗

0 . That is, it enables us to find hαi
:

(hαj
,
∑

i

λieii) = αj(
∑

i

λieii)

= λj − λj+1 . (VIII.7)

Combining this with Eq. (VIII.6), we see that

hαi
= (eii − ei+1 i+1)/(2n) (VIII.8)

and
〈αi, αj〉 = (2δij − δi j+1 − δi+1 j)/(2n) . (VIII.9)

This agrees in particular with our earlier computation for SU(3). From the value
of 〈αi, αj〉 we see that the Cartan matrix and Dynkin diagram are given by

An :

























2 −1 0 .

−1 2 −1 .

0 −1 . .

. −1 0

−1 2 −1

. . . 0 −1 2

























h

α1

h

α2

. . . h

αn
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where we have chosen to represent An rather than An−1.

We next consider the symplectic group Sp(2m) and its associated Lie
algebra. The group consists of the 2m×2m matrices A with the property AtJA = J
where ( )t indicates transpose and J is the 2m × 2m matrix

J =

[

0 I

−I 0

]

. (VIII.10)

The corresponding requirement for the Lie algebra is obtained by writing A =
exp(A) ≈ I + A. Thus we have At = JAJ . In terms ofm × m matrices, we can
write

A =

[

A1 A2

A3 A4

]

(VIII.11)

and find the restrictions At
1 = −A4,A2 = At

2,A3 = At
3. In accordance with these,

we choose the following basis elements (j, k ≤ m):

e1
jk = ejk − ek+m,j+m ,

e2
jk = ej,k+m + ek,j+m , j ≤ k

e3
jk = ej+m,k + ek+m,j , j ≤ k . (VIII.12)

The Cartan subalgebra has a basis hj = e1
jj . By direct computation we find that if

h =
∑

i hiλi,

[

h, e1
jk

]

= +(λj − λk)e1
jk , j 6= k

[

h, e2
jk

]

= +(λj + λk)e2
jk , j ≤ k

[

h, e3
jk

]

= −(λj + λk)e3
jk , j ≤ k . (VIII.13)
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We take as an ordered basis of roots α1(h) = λ1 − λ2, α2(h) = λ2 − λ3,
. . . αm−1(h) = λm−1 − λm, αm(h) = 2λm. With this ordering, the αi’s are them-
selves simple roots. For example, the root α(h) = λm−1 + λm is not simple since it
is the sum of αm−1 and αm.

We calculate the Killing form on the Cartan subalgebra explicitly by consid-
ering in turn the contribution of each root to the trace which defines the form.

(

∑

i

λihi,
∑

j

λ′
jhj

)

=
∑

p,q

(λp − λq)(λ
′
p − λ′

q) + 2
∑

p≤q

(λp + λq)(λ
′
p + λ′

q)

=
∑

p,q

[(λp − λq)(λ
′
p − λ′

q) + (λp + λq)(λ
′
p + λ′

q)] +
∑

p

4λpλ
′
p

= 4(m + 1)
∑

p

λpλ
′
p . (VIII.14)

We easily see then that

hαi
=

(hi − hi+1)

4(m + 1)
, i < m

hαm =
hm

2(m + 1)
. (VIII.15)

Since (hi, hj) = δij4(m + 1), we can compute directly all the terms we need for the
Cartan matrix:

〈αi, αj〉 =
1

4(m + 1)
(2δij − δi j+1 − δi+1 j), i, j 6= m

〈αi, αm〉 = − 1

2(m + 1)
δi+1 m, i 6= m

〈αm, αm〉 =
1

(m + 1)
. (VIII.16)

The Lie algebra which is associated with Sp(2n) is denoted Cn. From
Eq. (VIII.16) we derive its Cartan matrix and Dynkin diagram:
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Cn :

























2 −1 0 . . .

−1 2 −1 .

0 −1 . .

. . −1 0

. −1 2 −1

. . . 0 −2 2

























x

α1

x

α2

. . . x

αn–1

h

αn

The orthogonal groups are given by matrices which satisfy AtA = I.
Using the correspondence between elements of the group and elements of the Lie
algebra as discussed in Chapter I, A = expA ≈ I +A,we see that the requirement is
A + At = 0. Clearly these matrices have only off-diagonal elements. As a result, it
would be hard to find the Cartan subalgebra as we did for An and Cn by using the
diagonal matrices. To avoid this problem, we perform a unitary transformation on
the matrices A. This will yield an equivalent group of matrices obeying a modified
condition. Let us write

A = UBU† , (VIII.17)

so that
AtA = U†tBtU tUBU† = I. (VIII.18)

Setting K = U tU , we have BtKB = K. Writing B ≈ I + B, we have

BtK + KB = 0. (VIII.19)

A convenient choice for the even dimensional case, n = 2m, is
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U =
1√
2

[

i −i

−1 −1

]

, (VIII.20)

so that

K =

[

0 I

I 0

]

. (VIII.21)

Representing B in terms of m × m matrices,

B =

[

B1 B2

B3 B4

]

(VIII.22)

the condition becomes

B1 = −Bt
4 , B2 = −Bt

2 , B3 = −Bt
3 . (VIII.23)

We can now select a basis of matrices obeying these conditions:

e1
jk = ej,k − ek+m,j+m,

e2
jk = ej,k+m − ek,j+m, j < k

e3
jk = ej+m,k − ek+m,j , j < k (VIII.24)

and designate the basis for the Cartan subalgebra by

hj = e1
jj . (VIII.25)

Writing a general element of the Cartan subalgebra as

h =
∑

i

λihi , (VIII.26)

we compute the various roots



VIII. The Classical Lie Algebras 59

[

h, e1
jk

]

= (λj − λk)e1
jk j 6= k

[

h, e2
jk

]

= (λj + λk)e2
jk j < k

[

h, e3
jk

]

= −(λj + λk)e3
jk j < k . (VIII.27)

Note that for e2
jk and e3

jk we must have j 6= k or else the matrix vanishes. Thus
there are no roots corresponding to ±2λj. We may take as a basis of simple roots
α1(h) = λ1 − λ2, α2(h) = λ2 − λ3, . . . αm−1(h) = λm−1 − λm, αm(h) = λm−1 + λm.

The Killing form restricted to the Cartan subalgebra is given by

(
∑

i

λihi,
∑

j

λ′
jhj) =

∑

i6=j

(λi − λj)(λ
′
i − λ′

j) + 2
∑

i<j

(λi + λj)(λ
′
i + λ′

j)

=
∑

i,j

[(λi − λj)(λ
′
i − λ′

j) + (λi + λj)(λ
′
i + λ′

j)] −
∑

i

4λiλ
′
i

= 4(m − 1)
∑

i

λiλ
′
i . (VIII.28)

From this relation we can determine the hαi
’s:

hαi
=

hi − hi+1

4(m − 1)
, i < m (VIII.29a)

hαm =
hm−1 + hm

4(m − 1)
. (VIII.29b)

The scalar products of the roots are now easily computed:

〈αi, αj〉 = [2δij − δij+1 − δi+1j ]/[4(m − 1)] i, j < m

〈αm, αm〉 = 1/[2(m− 1)]

〈αm−1, αm〉 = 0,

〈αm−2, αm〉 = −1/[4(m− 1)] . (VIII.30)
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Thus the Cartan matrix and Dynkin diagram are

Dn :































2 −1 0 . . . .

−1 2 −1 .

0 −1 .

. 2 −1 0 0

. −1 2 −1 −1

. 0 −1 2 0

. 0 −1 0 2































h

α1

h

α2

. . . h

αn–2

/
/
/
/
/

h

αn–1

\
\
\
\
\

h

αn

For the odd dimensional case of the orthogonal group, we proceed the same
way except that we set

U = 1√
2







√
2 0 0

0 im −im

0 −1m −1m






(VIII.31)

so that

K =







1 0 0

0 0m 1m

0 1m 0m






(VIII.32)

where the subscript m indicates an m × m matrix. The corresponding matrix B
may be parameterized as
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B =







b1 c1 c2

d1 B1 B2

d2 B3 B4






. (VIII.33)

For the 2m × 2m pieces of the matrix, the conditions are the same as for the even
dimensional orthogonal algebra. The constraints on the new matrices are

b1 = 0 , c1 = −dt
2 , c2 = −dt

1 . (VIII.34)

Thus we must add to our basis for the 2m dimensional orthogonal algebra the
elements (1 ≤ j ≤ m) :

e4
j = e0j − ej+m 0 ; e5

j = ej0 − e0 j+m . (VIII.35)

The corresponding roots are seen to be

[

h, e4
j

]

= −λje
4
j ;

[

h, e5
j

]

= λje
5
j . (VIII.36)

Using these new roots, together with those found for the even dimensional case, we
compute the Killing form

(

∑

i

λihi,
∑

j

λ′
jhj

)

=
∑

i6=j

(λi − λj)(λ
′
i − λ′

j) + 2
∑

i<j

(λi + λj)(λ
′
i + λ′

j) + 2
∑

i

λiλ
′
i

= 4(m − 1
2 )
∑

i

λiλ
′
i . (VIII.37)

From this we can infer the values
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hαi
=

hαi
− hαi+1

4(m − 1
2 )

, i < m

hαm =
hαm

4(m − 1
2 )

(VIII.38)

where now the simple roots have the values α1(h) = λ1 − λ2, α2(h) = λ2 −
λ3, . . . αm−1(h) = λm−1−λm, αm(h) = λm. Note that the last of these was not even
a root for the even dimensional case. Using the Killing form, it is easy to compute
the scalar product on the root space:

〈αi, αj〉 =
1

4(m − 1
2 )

(2δij − δi j+1 − δi+1 j), i < m

〈αm, αi〉 = 0, i < m − 1

〈αm, αm−1〉 = − 1

4(m − 1
2 )

,

〈αm, αm〉 =
1

4(m − 1
2 )

. (VIII.39)

Accordingly, the Cartan matrix and Dynkin diagram are

Bn :

























2 −1 0 . . .

−1 2 −1 .

0 −1 .

. 2 −1 0

. −1 2 −2

. . . 0 −1 2

























h

α1

h

α2

. . . h

αn–1

x

αn

Notice the similarity between Bn and Cn. In the Cartan matrix they differ only by
the interchange of the last off-diagonal elements. The corresponding change in the
Dynkin diagrams is to reverse the shading of the dots.
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References

This material is discussed in DYNKIN I, JACOBSON, pp. 135-141, and
MILLER, pp. 351–354.

Exercise

1. Starting with the Dynkin diagrams, construct drawings of the roots of B2,
D2, A3, B3, and C3.
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IX. The Exceptional Lie Algebras

We have displayed the four series of classical Lie algebras and their Dynkin
diagrams. How many more simple Lie algebras are there? Surprisingly, there are
only five. We may prove this by considering a set of vectors (candidates for simple
roots) γi ⊂ H∗

0 and defining a matrix (analogous to the Cartan matrix)1:

Mij = 2
〈γi, γj〉
〈γj , γj〉

(IX.1)

and an associated diagram (analogous to the Dynkin diagram), where the ithand

jthpoints are joined by MijMji lines. The set γi is called allowable , (in Jacobson’s
usage) if

i. The γi are linearly independent, that is, if det M 6= 0.

ii. Mij ≤ 0 for i 6= j.

iii. MijMji = 0, 1, 2, or 3.
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With these definitions, we can prove a series of lemmas:

1. Any subset of an allowable set is allowable. Proof: Since a subset of a
linearly independent set is linearly independent, (i) is easy. Equally obvious
are (ii) and (iii).

2. An allowable set has more points than joined pairs. Proof: Let γ =
∑

i γi〈γi, γi〉−
1
2 . Since the set is linearly independent, γ 6= 0 so 〈γ, γ〉 > 0.

Thus

0 < 〈γ, γ〉 =
∑

i<j

2
〈γi, γj〉

〈γi, γi〉
1
2 〈γj , γj〉

1
2

+ no. of points

0 < −
∑

i<j

[MijMji]
1
2 + no. of points . (IX.2)

For each pair of joined points, MijMji is at least unity, so

no. of joined pairs < no. of points.

3. An allowable set’s diagram has no loops. Proof: If it did, there would be a
subset with at least as many joined pairs as points.

4. If an allowable set has a diagram with a chain of points joined only to suc-
cessive points by single lines, there is an allowable set whose diagram is the
same except that the chain is shrunk to a point. Proof: Let the chain be
β1, β2, . . . βm and let β =

∑

i βi. Now

〈β, β〉 =
∑

i

〈βi, βi〉 + 2
∑

i<j

〈βi, βj〉

= m〈β1, β1〉 − (m − 1)〈β1, β1〉

= 〈β1, β1〉 (IX.3)

so β is the same size as the individual points in the chain. Moreover, if
γ is joined to the chain at the end,say to β1, then 〈γ, β1〉 = 〈γ, β〉, since
〈γ, βj〉 = 0 for all j 6= 1.
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5. No more than three lines emanate from a vertex of an allowable diagram.
Proof: Suppose γ1, γ2, . . . γm are connected to γ0. Then 〈γi, γj〉 = 0 , for
i, j 6= 0 since there are no loops . Since γ0 is linearly independent of the γi, its
magnitude squared is greater than the sum of the squares of its components

along the orthogonal directions γi〈γi, γi〉−
1
2 :

〈γ0, γ0〉 >
∑

i

〈γ0, γi〉2〈γi, γi〉−1 . (IX.4)

Thus 4 >
∑

i M0iMi0. But M0iMi0 is the number of segments joining
γ0 and γi.

6. The only allowable configuration with a triple line is

h h

7. An allowable diagram may have one vertex with three segments meeting at a
point, but not more. It may have one double line segment, but not more. It
may not have both. Proof: In each of these instances, it would be possible
to take a subset of the diagram and shrink a chain into a point so that the
resulting diagram would have a point with more than three line emanating
from it. Note that this means that a connected diagram can have roots of at
most two sizes, and we henceforth darken the dots for the smaller roots.

8. The diagrams

x x h h h

and

x x x h h
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are not allowable. Proof: Consider the determinant of M for the first
diagram:



















2 −1 0 0 0

−1 2 −1 0 0

0 −2 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2



















.

We see that if we add the first and last columns, plus twice the second and
fourth, plus three times the third, we get all zeros. Thus the determinant
vanishes. The matrix for the second diagram is just the transponse of the
first.

9. The only diagrams with a double line segment which may be allowable are
of the form:

x x . . . x h

h h . . . h x

h h x x

10. By (7) above, the only diagrams with a branch in them are of the form:
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h

h

.

.

.

h h . . .

h

h . . . h h

11. The diagram below is not allowable

h h

h

h

h h h

Proof: The matrix for the diagram is:































2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 −1 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 0 0

0 0 −1 0 0 2 −1

0 0 0 0 0 −1 2































Straightforward manipulation like that above shows that the determinant
vanishes.
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12. The only allowable diagrams with a branch in them are of the form:

h h . . . h
/
/
/
/
/

h

\
\
\
\
\

h

h h . . .

h

h . . . h h

13. The diagram below is not allowable. This is proved simply by evaluating the
associated determinant and showing it vanishes.

h h

h

h h h h h h
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14. The complete list of allowable configurations is

An

h h . . . h h

Bn

h h . . . h x

Cn

x x . . . x h

Dn

h h . . . h
/
/
/
/
/

h

\
\
\
\
\

h

G2

h x
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F4

h h x x

E6

h h

h

h h h

E7

h h

h

h h h h

E8

h h

h

h h h h h

Above are given the names use to designate the five exceptional Lie al-

gebras. So far we have only excluded all other possibilities. In fact, these five
diagrams do correspond to simple Lie algebras.
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Footnote

1. Throughout the chapter we follow the approach of JACOBSON, pp. 128–
135.

Exercise

1. Prove #11 and #13 above.
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X. More on Representations

We continue our discussion of Section IV. As before, a representation is a
mapping of the elements of the Lie algebra into linear operators,

eα → Eα

hi → Hi (X.1)

which preserves the commutation relations of the Lie algebra. The operators E and
H act on a vector space with elements generically denoted φ. We can select a basis
in which the H ’s are diagonal.1 Thus we can write

HφM = M(h)φM (X.2)

where M ∈ H∗
0 is called a weight and φM is a weight vector.
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The weights come in sequences with successive weights differing by roots of
the Lie algebra. We have seen that if a complete string of roots is M + pα, . . . M,
. . . M − mα, then (see Eq. (V.22))

m − p = 2
〈M, α〉
〈α, α〉 . (X.3)

A finite dimensional irreducible representation must have a highest weight, that
is, a weight Λ such that every other weight is less than Λ, where the ordering is
determined in the usual fashion (That is, we pick a basis of roots and order it.
A weight is positive if, when expanded in this ordered basis, the first non-zero
coefficient is positive, and we say M1 > M2 if M1 − M2 > 0.)

Let {αi} be a basis of simple roots and let Λ be the highest weight of an
irreducible representation. Then Λ + αi is not a weight. Thus by Eq. (X.3),

Λi = 2
〈Λ, αi〉
〈αi, αi〉

≥ 0 . (X.4)

Each greatest weight, Λ, is thus specified by a set of non-negative integers called
Dynkin coefficients:

Λi = 2
〈Λ, αi〉
〈αi, αi〉

. (X.5)

We could use the inverse of the Cartan matrix to determine the precise expansion
of Λ in terms of the simple roots, but this is rarely worthwhile.

Given the Dynkin coefficients of the highest weight, it is easy to determine
the full set of weights in the irreducible representation, expressed again in terms
of their Dynkin coefficients. The algorithm is similar to that we used to find all
the roots of a Lie algebra from its Cartan matrix. Given a weight, M , we need to
determine whether M −αj is also a weight. Since we begin with the highest weight
and work down, we know the value of p in Eq. (X.3). We shall keep track of the
integers

Mi = 2
〈M, αi〉
〈αi, αi〉

. (X.6)
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If
mj = pj + Mj > 0 , (X.7)

then we know we can subtract the root αj from the root M to obtain another root.
We record the Dynkin coefficients of M −αj by subtracting from Mi the quantities
Aji. This is most easily carried out by writing the Cartan matrix at the top of the
computation.

Consider an example for SU(3) (or A2 in the other notation). Let us de-
termine the weights corresponding to the irreducible representation whose highest
weight has Dynkin coefficients (1,0).

[

2 −1

−1 2

]

1 0

−1 1

0 −1

The Dynkin coefficients are entered in the boxes and successive rows are obtained
by subtracting the appropriate row of the Cartan matrix. It is easy to see that the
highest weight here can be expanded in simple roots as

Λ = 2
3α1 + 1

3α2 . (X.8)

Thus the weights of this three dimensional representation are

2
3α1 + 1

3α2 ; − 1
3α1 + 1

3α2 ; − 1
3α1 − 2

3α2 .

Of course, if we had started with Dynkin coefficients (0,1), we would have obtained
a three dimensional representation with weights
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1
3α1 + 2

3α2 ; 1
3α1 − 1

3α2 ; − 2
3α1 − 1

3α2 .

Actually, we have relied on our previous knowledge of SU(3) to assert that these
representations are three dimensional. All we have seen is that there are three
different weights. It is often the case that a weight may correspond to more than
one (linearly independent) weight vector, so that the weight space may be more
than one dimensional. Consider for example the SU(3) representation with Dynkin
coefficients (1,1), the familiar adjoint representation:

[

2 −1

−1 2

]

1 1

−1 2 2 −1

0 0

1 −2 −2 1

−1 −1

This representation is eight dimensional. The weight with Dynkin coefficients (0,0)
corresponds to a two dimensional space. Indeed, since this is the adjoint repre-
sentation, we recognize that this space coincides with the Cartan subalgebra. The
procedure for determining the dimensionality of a weight space will be discussed
later.

As two additional examples, consider the representations of SO(10) (D5)
specified by the Dynkin coefficients (1,0,0,0,0) and (0,0,0,0,1) where the simple
roots are numbered:
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h

α1

h

α2

h

α3

/
/
/
/
/

h

α4

\
\
\
\
\

h

α5

We have then the schemes:



















2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2



















1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 1

0 0 0 −1 1 0 0 0 1 −1

0 0 1 −1 −1

0 1 −1 0 0

1 −1 0 0 0

−1 0 0 0 0

and
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2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2



















0 0 0 0 1

0 0 1 0 −1

0 1 −1 1 0

1 −1 0 1 0 0 1 0 −1 0

−1 0 0 1 0 1 −1 1 −1 0

−1 0 1 −1 0 1 0 −1 0 1

−1 1 −1 0 1 1 0 0 0 −1

0 −1 0 0 1 −1 1 0 0 −1

0 −1 1 0 −1

0 0 −1 1 0

0 0 0 −1 0
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New representations may be obtained by taking products of representations.
This procedure when applied to SU(2) is the familiar addition of angular momentum
in quantum mechanics. Suppose we have two representations, x → X(1) and x →
X(2) where x ∈ L and X(1) and X(2) are linear operators on vector spaces whose
basis elements will be denoted by φ and η respectively:

X(1)φi =
∑

j

X
(1)
ij φj (X.9a)

X(2)ηi =
∑

j

X
(2)
ij ηj . (X.9b)

Here X
(1)
ij and X

(2)
ij are coefficients, not operators. We can define a product rep-

resentation on the product space whose basis elements are of the form φi ⊗ ηj as
follows:

Xφi ⊗ ηj =
∑

k

X
(1)
ik φk ⊗ ηj +

∑

l

φi ⊗ X
(2)
jl ηl . (X.10)

For the rotation group, we might write J = L + S and φ and η might represent the
spatial and spin parts of the wave function.

If x is an element of the Cartan subalgebra we indicate it by h and its
representation by H . If φ and η are weight vectors with weights M (1) and M (2),
then φ⊗η is a weight vector of the product representation with weight M (1)+M (2),
as we see from Eq. (X.10). If the highest weights of the two representations are
Λ(1) and Λ(2), then the highest weight of the product representation is Λ(1) + Λ(2).

Our construction of the weights of an irreducible representation from the
Dynkin coefficients of its highest weight shows that all the weights are determined
by the highest weight. It is also possible to show that the weight space of the
highest weight is always one-dimensional for an irreducible representation. Thus
each product of irreducible representations contains one irreducible representation
whose highest weight is the sum of the highest weights of the two representations
forming it.
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As an example, consider again SU(3). The three dimensional representation
may be represented by (1,0) and the other three dimensional representation by
(0,1). Their product must contain the representation (1,1), which is in fact the
eight dimensional representation.

Consider the special case in which the representations being multiplied are
identical. The product space can be broken into two parts, a symmetric part with
basis φi ⊗φj + φj ⊗φi, and an anti-symmetric part, with basis φi ⊗φj −φj ⊗φi. If
the highest weight of the representation carried by φ is Λ, then the highest weight
carried by the symmetric space is 2Λ. The anti-symmetric space does not contain
the vector with this weight since it is symmetric . The highest weight in the anti-
symmetric space is found by taking the sum of the highest and the next-to-highest
weights.

Again, a simple example may be taken from SU(3). Consider 3 × 3 (i.e.
(1, 0)×(1, 0)). The second highest weight in (1,0) is (-1,1). Thus the anti-symmetric
space carries the representation whose highest weight is (1,0)+(-1,1)=(0,1). This is
the 3∗. The symmetric space carries the (2,0), the 6 of SU(3). In general, however,
the product contains more than two irreducible components.

It is possible to extend the anti-symmetrization procedure by taking the n-
fold anti-symmetric product of a given representation. It is clear that the three
fold anti-symmetric product will contain a representation whose highest weight is
the sum of the three highest weights of the irreducible representation from which
it is made, and so on. Similarly, the n-fold symmetric product will contain an
irreducible representation whose highest weight is n-times the highest weight of the
initial irreducible representation.

These procedures are especially easy to apply to An, beginning with the
fundamental representation,(1, 0, . . .). Calculating the weights of this represen-
tation, we quickly see that the two-fold anti-symmetrization yields a highest weight
(0, 1, 0, . . .), the three-fold anti-symmetrization (0, 0, 1, 0, . . .), and so on.

In fact, combining these operations we can produce any of the irreducible
representations of An. To produce the representation with highest weight (m1,
m2, m3, . . .), we take the m1-fold symmetric product of (1, 0, 0, . . .) and the m2-
fold symmetric product of (0, 1, 0, . . .) and form their product. The irreducible
representation with highest weight in the product is (m1, m2, 0, . . .). We continue
in this fashion to build (m1, m2, m3, . . .).
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The representations with Dynkin coefficients all equal to zero except for one
entry of unity are called basic representations. It is clear that every representa-
tion can be formed from basic representations simply using the highest weights of
product representations. Moreover, for An, we have seen that every basic represen-
tation can be obtained from a single fundamental representation.

Consider, on the other hand, B3, (O(7)). We display the weights of the
representations (1,0,0) and (0,0,1).







2 −1 0

−1 2 −2

0 −1 2







1 0 0

−1 1 0

0 −1 2

0 0 0

0 1 −2

1 −1 0

−1 0 0
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2 −1 0

−1 2 −2

0 −1 2







0 0 1

0 1 −1

1 −1 1

−1 0 1 1 0 −1

−1 1 −1

0 −1 1

0 0 −1

We see that the twice anti-symmetric product of (1,0,0) contains (0,1,0), but
the three times anti-symmetric product is (0,0,2). Thus we cannot build all the
basic representations from (1,0,0). Nor can they all be built from (0,0,1). We must
begin with both the (0,0,1) and (1,0,0) to generate all the basic representations.

Analogous considerations establish that a single representation will generate
all representations for the Cn algebras, but three initial representations are necessary
for the Dn algebras.
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Footnote

1. See JACOBSON, p 113.

References

Representations are discussed at length in the appendix to DYNKIN III.
For SU(n), Young tableaux are the most effective procedure. They are explained
in GEORGI. For a mathematical exposition, see BOERNER. For a very practical
exposition, see SCHENSTED.

Exercises

1. Find the weight scheme for the representations (1, 0 and (0, 1) of B2.

2. Find the weight scheme for (1, 0) of G2.

2. Find the weight scheme for (1, 0) and (0, 1) of F4.
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XI. Casimir Operators and Freudenthal’s Formula

One of the most familiar features of the analysis of SU(2) is the existence of an
operator T 2 = T 2

x +T 2
y +T 2

z which commutes with all the generators, Tx, Ty, and Tz.
It is important to note that T 2 really has meaning only for representations, and not
as an element of the Lie algebra since products like txtx are not defined for the
algebra itself. Products like TxTx are defined for representations since then Tx is
a linear transformation of a vector space into itself, and can be applied twice. We
seek here the generalization of T 2 for an arbitrary simple Lie algebra.

It is well-known that T 2 = 1
2 (T+T− + T−T+) + TzTz. This is the form which

is easiest to relate to the forms we have used to describe Lie algebras in general.
We might guess that the generalization will be roughly of the form

C =
∑

j,k

HjMjkHk +
∑

α6=0

EαE−α (XI.1)
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where Hj = Hαj
and the αj are a basis of simple roots. The matrix M is to be

determined by requiring that C commute with all the generators of the algebra. The
normalizations of the eα are chosen so (eα, eβ) = δα,−β, and thus

[eα, e−α] = hα , (XI.2a)

[Eα, E−α] = Hα . (XI.2b)

Let us define Nαβ by

[eα, eβ ] = Nαβeα+β = −Nβ αeα+β . (XI.3)

It is clear that C in Eq. (XI.1) already commutes with all the generators
of the Cartan subalgebra since [Hi, Hj] = 0 and [EαE−α, Hi] = 0. It remains to
calculate the commutator of C with Eβ . We begin with the second term in C:





∑

α6=0

EαE−α, Eβ



 =
∑

α 6=0

α 6=β

EαN−α,βEβ−α

+
∑

α 6=0

α 6=−β

NαβEα+βE−α + EβH−β + H−βEβ . (XI.4)

We can obtain the necessary relation between the coefficients Nαβ using the invari-
ance of the Killing form:

(eα, [eβ, eγ ]) = Nβ,γ δ−α,β+γ = −N−α−β,β δα+β,−γ

= ([eα, eβ] , eγ)

= Nα,βδα+β,−γ

Nα,β = −N−α−β,β . (XI.5)

Thus we have

∑

α 6=0

α 6=−β

NαβEα+βE−α =
∑

α′ 6=0

α′ 6=β

Nα′−β,βEα′Eβ−α′

=
∑

α′ 6=0

α′ 6=β

−N−α′,βEα′Eβ−α′ , (XI.6)
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so the piece of the commutator of Eβ with C we have calculated is





∑

α6=0

EαE−α, Eβ



 = EβH−β + H−βEβ . (XI.7)

We now arrange the matrix M so that the remainder of the commutator of C with
Eβ just cancels this.





∑

j,k

HjMjkHk, Eβ



 =
∑

j,k

[〈αk, β〉HjMjkEβ + 〈β, αj〉MjkEβHk] . (XI.8)

Now suppose that β has the expansion in terms of simple roots

β =
∑

l

klαl . (XI.9)

Then the coefficients are given by

kl =
∑

j

〈β, αj〉A−1
jl (XI.10)

where the matrix A is

Apq = 〈αp, αq〉 (XI.11)

and A−1 is its inverse. Now
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Hβ =
∑

l

klHl

=
∑

j,k

〈β, αj〉A−1
jk Hk . (XI.12)

Thus if we take the matrix M to be A−1, then the second portion of the commutator
is





∑

j,k

HjA−1
jk Hk, Eβ



 = HβEβ + EβHβ , (XI.13)

just cancelling the first part. Altogether then

C =
∑

j,k

HjA−1
jk Hk +

∑

α6=0

EαE−α . (XI.14)

Consider SU(2) as an example. Our standard commutation relations are

[tz, t+] = t+; [tz , t−] = −t−; [t+, t−] = 2tz , (XI.15)

from which we find
(t+, t−) = Tr ad t+ad t− = 4 . (XI.16)

Thus to obtain the normalization we have used in deriving the Casimir operator,
we must set

t′
+

=
1

2
t+ ; t′− =

1

2
t− . (XI.17)

so that
(t′

+
, t′

−
) = 1 . (XI.18)



88 XI. Casimir Operators and Freudenthal’s Formula

Now we regard t′
+

as the eα. The corresponding hα is accordingly

hα =
[

t′
+
, t′

−

]

=
1

2
tz . (XI.19)

It is straightforward to compute

〈α, α〉 = (hα , hα) =
1

4
(tz , tz) =

1

2
. (XI.20)

It follows that the 1 × 1 matrix M = A−1 is simply 2. Altogether then, we find

C = 2HαHα + EαE−α + E−αEα

=
1

2
TzTz +

1

4
(T+T− + T−T+) . (XI.21)

This differs from the conventional SU(2) Casimir operator by an overall factor of
1
2 , a result simply of our need to establish some initial normalization in Eq. (XI.1).
The importance of the Casimir operator is that since it commutes with all the
generators, including the raising and lowering operators, it has the same value on
every vector of an irreducible representation, since every such vector can be obtained
by applying lowering operators to the highest weight vector. In fact, we can find
the value of the Casimir operator on an irreducible representation by considering its
action on the highest weight vector. Suppose the highest weight is Λ and that φΛ is
a vector with this weight. Then for every positive root α we know that EαφΛ = 0
since otherwise it would have weight Λ + α. On the other hand, we can compute
EαE−αφΛ = (E−αEα + Hα)φΛ = Λ(hα)φΛ = 〈Λ, α〉φΛ, if α is positive. Thus we
have

CφΛ =
∑

j,k

HjA−1
jk HkφΛ +

∑

α>0

〈Λ, α〉φΛ

=
∑

j,k

〈Λαj〉A−1
jk 〈Λ, αk〉φΛ +

∑

α>0

〈Λ, α〉φΛ . (XI.22)
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Thus on this irreducible representation

C =
∑

j,k

〈Λαj〉A−1
jk 〈Λ, αk〉 +

∑

α>0

〈Λ, α〉

= 〈Λ, Λ〉 + 〈Λ, 2δ〉 (XI.23)

where we have introduced the element of H∗
0

δ =
1

2

∑

α>0

α . (XI.24)

A few comments are in order concerning normalizations. We have derived
our scalar product from the Killing form. As we saw in Chapter IV, all invariant
bilinear forms are proportional to the Killing form if the algebra is simple. Suppose
we define a second form by

(x, y)′ = c(x, y) = cTr ad xad y . (XI.22)

Now since hρ is defined by
(hρ, k) = ρ(k) (XI.23)

we define h′
ρ by

(h′
ρ, k)′ = ρ(k) (XI.24)

so that

h′
ρ =

1

c
hρ (XI.25)
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and

〈ρ, τ〉′ ≡ (h′
ρ, h

′
τ )′ =

1

c
〈ρ, τ〉 . (XI.26)

We now compare the commutation relations as expressed using the two dif-
ferent scalar products. We have

[hα , eβ] = β(hα)eβ = (hβ , hα)eβ = 〈α, β〉eβ (XI.27)

which becomes

[h′
α, eβ ] = β(h′

α)eβ = (h′
α, h′

β)′eβ = 〈α, β〉′eβ . (XI.28)

Thus the commutation relations look the same for this new scalar product. A new
Casimir operator (which is just a multiple of the old one) can be chosen so that
its value is just 〈Λ, Λ + 2δ〉′. In this way, we can choose a scalar product with any
desired normalization and have the computations go through just as before. For
some applications, it is traditional to use a scalar product which gives the largest
root a length squared equal to 2. We indicate this scalar product by 〈 , 〉2.

One particular way to choose an invariant bilinear form is to take the trace
of two representation matrices. That is, if φ is a representation φ(eα) = Eα, etc.,
then we define

((x, y)) = Tr φ(x)φ(y) . (XI.29)

The invariance of this form follows from the invariance of traces under cyclic per-
mutation. We know then that (( , )) is proportional to the Killing form and to the
form ( , )2 which yields 〈 , 〉2. The constant of proportionality to the latter is called
the index of the representation, lφ:

((x, y)) = lφ(x, y)2 . (XI.30)
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Now we can evaluate lφ by considering C with the normalization appropriate
to ( , )2. For a representation with highest weight Λ, C = 〈Λ, Λ + 2δ〉2. If we take
Tr C, we get NΛ〈Λ, Λ + 2δ〉2, where NΛ is the dimension of the representation. On
the other hand, replacing (( , )) by lφ( , )2 yields lφNadj where Nadj is the dimension
of the algebra, that is, the dimension of the adjoint representation. Thus

lφ =
NΛ〈Λ, Λ + 2δ〉2

Nadj

. (XI.31)

We shall see some applications of the index in later chapters.

One particular application of the Casimir operator is in deriving Freuden-

thal’s Recursion Formula for the dimensionality of a weight space. Previously,
we developed an algorithm for determining all the weights of an irreducible rep-
resentation, but without ascertaining the dimensionality of each weight space, an
omission which we now rectify. Subsequently, this result will be used to derive
Weyl’s formula for the dimension of an irreducible representation.

We consider an irreducible representation whose highest weight is Λ and seek
the dimensionality of the space with weight M . Now we know the constant value
of C on the whole carrier space of the representation, so we can calculate the trace
of C restricted to the space with weight M :

TrMC = nM 〈Λ, Λ + 2δ〉 . (XI.32)

Here nM is the dimensionality of the space with weight M , that is, the quantity we
wish to compute. Now we calculate the same quantity another way. The first part
of C gives us

TrM

∑

j,k

HjA−1
jk Hk =

∑

j,k

〈αj , M〉A−1
jk 〈αk, M〉nM

= nM 〈M, M〉 . (XI.33)
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What remains is

TrM

∑

α>0

(EαE−α + E−αEα) , (XI.34)

where our normalization is (eα, e−α) = 1 so

[Eα, E−α] = Hα, [Hα, Eα] = 〈α, α〉Eα . (XI.35)

Now usually for SU(2) we have

[T+, T−] = 2Tz, [Tz, T+] = T+ (XI.36)

and

T 2 = T 2
z +

1

2
[T+T− + T−T+] . (XI.37)

We want to exploit our understanding of SU(2) so we consider the SU(2) generated
by Eα, E−α, and Hα. The correspondence which gives the right normalization is

Tz =
Hα

〈α, α〉 , T+ =

√

2

〈α, α〉Eα , T− =

√

2

〈α, α〉E−α . (XI.38)

Now consider the weight space associated with the weight M . The full ir-
reducible representation contains, in general, many irreducible representations of
the SU(2) associated with the root α. We can pick a basis for the weight space for
weight M so that each basis vector belongs to a distinct irreducible representation
of the SU(2). Each such irreducible representation is characterized by an integer or
half-integer, t which is the maximal eigenvalue of Tz. Moreover, the usual Casimir
operator, Eq. (XI.37), then has the value t(t + 1). If φt is an appropriate weight
vector then we can write
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[

HαHα

〈α, α〉2 +
1

〈α, α〉EαE−α +
1

〈α, α〉E−αEα

]

φt = t(t + 1)φt (XI.39)

so that

[EαE−α + E−αEα] φt = 〈α, α〉t(t + 1)φt −
〈M, α〉2
〈α, α〉 φt (XI.40)

where we have used the fact that φt has weight M . The particular weight vector
φt belongs to a series of weight vectors which form a basis for an irreducible repre-
sentation of the SU(2) described above. Suppose the highest weight in this series is
M + kα, and the associated weight vector is φM+kα. Then

TzφM+kα = tφM+kα =
Hα

〈α, α〉φM+kα =
〈α, M + kα〉

〈α, α〉 φM+kα . (XI.41)

Thus we can indentify

t =
〈α, M + kα〉

〈α, α〉 . (XI.42)

This result can now be inserted in Eq. (XI.39) to find

[EαE−α + E−αEα] φt = [k(k + 1)〈α, α〉 + (2k + 1)〈M, α〉]φt . (XI.43)

Each of our basis vectors for the space with weight M has associated with
it a value of k. In fact, more than one basis vector may have the same value of k.
A moment’s reflection reveals that the number of such basis vectors is precisely the
difference between the dimension of the space with weight M + (k + 1)α and that
with weight M + kα. Accordingly, we write

TrM

∑

α>0

[EαE−α + E−αEα]

=
∑

k≥0

(

nM+kα − nM+(k+1)α

)

[k(k + 1)〈α, α〉 + (2k + 1)〈M, α〉]

= nM 〈M, α〉 +
∞
∑

k=1

nM+kα[2k〈α, α〉 + 2〈M, α〉] . (XI.44)
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Combining this result with Eqs. (XI.32) and (XI.33), we find

TrMC = nM 〈Λ, Λ + 2δ〉

= nM 〈M, M〉

+
∑

α>0

[

nM 〈M, α〉 +

∞
∑

k=1

2nM+kα〈M + kα, α〉
]

. (XI.45)

This relation may be solved for nM in terms of the higher weights:

nM =

∑

α>0

∑∞
k=1 2nM+kα〈M + kα, α〉

〈Λ + M + 2δ, Λ − M〉 . (XI.46)

The highest weight always has a space of dimension one. Using Freudenthal’s
formula, Eq. (XI.45), we can determine the dimensionality of the spaces of the lower
weights successively. The denominator is most easily evaluated by expressing the
first factor by its Dynkin coefficients and the second factor in terms of simple roots.
As we shall demonstrate later, the Dynkin coefficients of δ are (1, 1, . . .). Since Λ
and M appear in the table of weights expressed in Dynkin coefficients, it is easy
then to find Λ + M + 2δ. Similarly, Λ − M is easily determined from the table of
weights. If the Dynkin coefficients of Λ + M + 2δ are

(Λ + M + 2δ) = (a1, a2, . . .) (XI.47)

and
Λ − M =

∑

i

kiαi (XI.48)

then

〈Λ + M + 2δ, Λ − M〉 =
∑

i

aiki

1

2
〈αi, αi〉 . (XI.49)
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The quantity in the numerator can be evaluated fairly easily as well. For a
given positive root, α, we check to see whether M ′ = M + kα is also a weight. If it
is, then M ′ and M lie in a string of weights separated by α’s. Let the highest and
lowest weights in the string be M ′ + pα and M ′ − mα. Then by Eq. (V.22),

2〈M ′, α〉 = (m − p)〈α, α〉 . (XI.50)

Let us consider an application of the Freudenthal formula to SU(3). The
27-dimensional representation has the Dynkin representation (2,2). It is the repre-
sentation with highest weight in the product of two adjoint representations.

[

2 −1

−1 2

]

2 2

0 3 3 0

−2 4 1 1 4 −2

−1 2 2 −1

−3 3 0 0 3 −3

−2 1 1 −2

−4 2 −1 −1 2 −4

−3 0 0 −3

−2 −2

First note that the weights (0,3) and (3,0) clearly are one dimensional since
there is only one way to reach them by lowering operators from the highest weight.
Thus the first ambiguity is for the weight (1,1). We compute with M=(1,1)
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Λ + M + 2δ = (5, 5)

Λ − M = α1 + α2

〈Λ + M + 2δ, Λ − M〉 = 10 · 1

2
〈α1, α1〉 (XI.51)

where we have used the relation 〈α1, α1〉 = 〈α2, α2〉.

To compute the numerator, we remember that there are three positive roots
α1, α2, and α1 + α2. The weight preceding (1,1) by α1 is (3,0). For this weight,
m=3 and p=0. Similarly for (0,3) which precedes (1,1) by α2. The weight preceding
(1,1) by α1 + α2 is (2,2). For this weight, m=4 and p =0. Remembering that all
the roots of SU(3) have the same size, we have for the numerator (3+3+4)〈α1, α1〉
and thus

N(1,1) = 2 . (XI.52)

For the weight (2,-1) we have

Λ + M + 2δ = (6, 3)

Λ − M = α1 + 2α2

〈Λ + M + 2δ, Λ − M〉 = (6 + 6) · 1

2
· 〈α1, α1〉 . (XI.53)

The numerator receives a contribution of 4〈α1, α1〉 from the root α1. For the root α2

there are two preceding weights to consider. The weight (0,3) contributes 3〈α1, α1〉.
The weight (1,1) contributes 2(2 − 1)〈α1, α1〉, where the factor of two comes from
the dimensionality of the weight space for (1,1). For the root α1 + α2, there is a
contribution 3〈α1, α1〉. Altogether, then,

N(2,−1) =
4 + 3 + 2 + 3

12 · 1
2

= 2 . (XI.54)
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References

The derivation of Freudenthal’s formula follows that given by JACOBSON,
pp. 243–249. The index of a representation is developed by DYNKIN II, see in
particular pp. 130–134.

Exercises

1. Find the index of the seven dimensional representation of G2.

2. Find the dimensionalities of all the weight spaces of the 27-dimensional rep-
resentation of SU(3).

3. Show that the index of the k dimensional representation of SU(2) is
(k − 1)k(k + 1)/6.
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XII. The Weyl Group

The irreducible representations of SU(2) manifest a very obvious symmetry:
for every state with Tz = m there is a state with Tz = −m. This symmetry is the
source of a more complex symmetry in larger algebras. The SU(2) representations
are symmetric with respect to reflection about their centers. The larger algebras
have reflection symmetries and the group generated by these reflections is called
the Weyl group.

Consider an irreducible representation of a simple Lie algebra. Now if α is a
root of the algebra, we can consider the SU(2) generated by eα, e−α, and hα . The
representation of the full algebra will in general be a reducible representation of this
SU(2). Let M be some particular weight and consider the weights and weight spaces
associated with . . . , M + α, M, M − α, . . .. These together form some reducible
representation of the SU(2). Under the SU(2) reflection, this representation is
mapped into itself. Moreover, since each weight space has a basis in which each
element belongs to a distinct SU(2) representation, it is clear that the reflection will
map one weight space into another of the same dimension. What is the relation
between the original weight and the one into which it is mapped? This is easily
inferred from geometry. The portion of M parallel to α is α〈M, α〉/〈α, α〉 and the
portion perpendicular to it is then M −α〈M, α〉/〈α, α〉. The reflection changes the
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sign of the former and leaves unchanged the latter. Thus the reflection of the weight
can be written

Sα(M) = M − 2
〈M, α〉
〈α, α〉 α , (XII.1)

where Sα is an operator acting on the space of weights, H∗
0 . It maps weights into

weights whose weight spaces are of the same dimension. If we let α range over all
the roots of the algebra we get a collection of reflections. By taking all combinations
of these reflections applied successively, we obtain the Weyl group.

The 27-dimensional representation of SU(3) provides a good example of the
symmetry at hand. The Y=0 subspace contains three SU(2) multiplets, one with
T=2, one with T=1, and one with T=0. The Y=1 subspace contains two SU(2)
multiplets, one with T=3/2 and one with T=1/2. The Y=2 subspace has T=1. The
SU(2) reflection maps the weight diagram into itself, preserving the dimensionality
of each weight space.

Rather than consider all the Sα, it turns out that it suffices to consider just
those Sα where α ∈ Π. These will also generate the full Weyl group. For SU(3) we
find

Sα1
: α1 → −α1

α2 → α1 + α2 = α3

Sα2
: α1 → α1 + α2 = α3

α2 → −α2 . (XII.2)

The full Weyl group for SU(3) has six elements.

We shall not need to know much about the Weyl group for specific algebras.
The utility of the Weyl group is that it enables us to prove quite general propositions
without actually having to consider the details of representations since it permits
the exploitation of their symmetries.
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Let us prove a number of useful facts about the Weyl group. First, the
Weyl group is a set of orthogonal transformations on the weight space. Orthogonal
transformations are those which preserve the scalar product. It is intuitively clear
that reflections have this property. To prove this for the full Weyl group it suffices
to prove it for the Sα which generate it. We have

〈SαM, SαN〉 = 〈M − 2
〈M, α〉
〈α, α〉 α, N − 2

〈N, α〉
〈α, α〉 α〉

= 〈M, N〉 . (XII.3)

We know that the Weyl group maps weights into weights, so by taking the
adjoint representation, we see that it maps roots into roots. The particular reflec-
tions Sα where α is simple have a special property. Certainly Sα(α) = −α. For
every other positive root, β ∈ Σ+, Sα(β) is positive. To see this, express

β =
∑

j

kjαj . (XII.4)

Now α is one of the αj ’s, say α = α1. Thus

Sα1
(β) =

∑

j

kjαj − 2α1

∑

j

kj

〈αj , α1〉
〈α1, α1〉

=
∑

j>1

kjαj + α1 × something . (XII.5)

Since β 6= α = α1, some kj 6= 0 for j > 1. Thus the root Sα(β) has some positive
coefficient in its expansion in terms of simple roots. But this is enough to establish
that all the coefficients are positive and hence so is the root.

The Weyl group provides the means to prove the relation used in the preced-
ing section, that the Dynkin coefficients of δ = 1

2

∑

α>0 α are all unity. Let αi be
one of the simple roots. By the orthogonality of the Weyl reflections, 〈Sαi

δ, αi〉 =
〈δ,−αi〉. On the other hand, Sαi

interchanges all the positive roots except αi itself,
so Sαi

δ = δ − αi. Thus
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〈δ − αi, αi〉 = 〈δ,−αi〉

2〈δ, αi〉 = 〈αi, αi〉 (XII.6)

as we wished to show.

Finally, consider all the weights M ′ which can be obtained by acting on the
weight M with an element S ∈ W , the Weyl group. We claim that the M ′ which
is the highest has Dynkin coefficients which are all non-negative. Suppose M∗ is
the highest of these weights SM , and further suppose that the Dynkin coefficient
2〈M∗, αi〉/〈αi, αi〉 < 0. Then Sαi

M∗ = M∗−2αi〈M∗, αi〉/〈αi, αi〉 is an even higher
weight, providing a contradiction.

References

The Weyl group is covered by JACOBSON, pp. 240–243.

Exercise

1. Find the elements of the Weyl group for G2 and their multiplication table.
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XIII. Weyl’s Dimension Formula

In this Section we derive the celebrated formula of Weyl for the dimension-
ality of an irreducible representation of a simple Lie algebra in terms of its highest
weight. Our derivation is essentially that of Jacobson, which is based on the tech-
nique of Freudenthal.

We shall be considering functions defined on H∗
0 . Instead of parameterizing

elements of H∗
0 in terms of the simple roots, it is convenient to over-parameterize

by writing ρ ∈ H∗
0 as

ρ =
∑

α∈Σ

ραα . (XIII.1)

We can define the action of an element, S, of the Weyl group on a function of ρ by

(SF )(ρ) = F (S−1ρ) . (XIII.2)
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As an example, consider the function known as the character of the represen-

tation

χ(ρ) =
∑

M

nM exp〈M, ρ〉 (XIII.3)

where the sum is over all the weights of a representation and nM is the dimen-
sionality of the weight space for M . Now we calculate the action of S ∈ W on
χ:

(Sχ)(ρ) =
∑

M

nM exp〈M, S−1ρ〉

=
∑

M

nM exp〈SM, ρ〉

=
∑

M

nM exp〈M, ρ〉 . (XIII.4)

Here we have used the orthogonality property of the Weyl group and the relation
nM = nSM . Thus we see that Sχ = χ, that is χ is invariant under the Weyl group.

Consider next the function

Q(ρ) =
∏

α>0

[exp(
1

2
〈α, ρ〉) − exp(−1

2
〈α, ρ〉)] . (XIII.5)

We want to determine the behavior of this function when acted upon by elements
of the Weyl group. It suffices to determine the effect of the Si = Sαi

, the reflections
associated with simple roots.

(SiQ)(ρ) =
∏

α>0

[

exp

(

1

2
〈α, S−1

i ρ〉
)

− exp

(

−1

2
〈α, S−1

i ρ〉
)]

=
∏

α>0

[

exp

(

1

2
〈Siα, ρ〉

)

− exp

(

−1

2
〈Siα, ρ〉

)]

. (XIII.6)
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We have already seen that Si interchanges all the positive roots except αi whose
sign it changes. Thus we see directly that

(SiQ)(ρ) = −Q(ρ) . (XIII.7)

Now Si reverses the sign of αi, but leaves every vector orthogonal to αi unchanged.
Thus detSi = −1 and we can write

(SiQ) = (detSi)Q . (XIII.8)

Indeed, every S ∈ W is a product of Si’s, so

SQ = detSQ . (XIII.9)

Functions with this property are called alternating.

We can make alternating functions by applying the operator

σ =
∑

S∈W

(detS)S (XIII.10)

for we have

S′σ =
∑

S∈W

S′(detS)S

=
∑

S∈W

detS′det(S′S)S′S

= detS′σ . (XIII.11)

It is convenient to find a representation of the alternating function Q(ρ) in
the form σF (ρ). From the definition of Q(ρ) it is clear that there must be an
expansion of the form
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Q(ρ) = σ
∑

β

cβ exp〈δ − β, ρ〉 (XIII.12)

where δ is half the sum of all the positive roots and where β is a sum of distinct
positive roots. Now in such an expansion it is redundant to include both σ exp〈M, ρ〉
and σ exp〈SM, ρ〉 since they are equal up to a factor detS. We have already seen
that among all the SM , S ∈ W , the largest one has only non-negative Dynkin
coefficients. Thus we need only consider terms where δ − β has only non-negative
Dynkin coefficients. In fact, we can restrict this further because if M has a Dynkin
coefficient which is zero, then σ exp〈M, ρ〉 = 0. This is easy to establish since if
M(hi) = 0, then SiM = M and Siσ exp〈M, ρ〉 = σ exp〈SiM, ρ〉 = σ exp〈M, ρ〉 =
detSiσ exp〈M, ρ〉 = −σ exp〈M, ρ〉 = 0. However, we have seen that δ has Dynkin
coefficients which are all unity. Now since β is a sum of positive roots it cannot have
only negative Dynkin coefficients. Thus we see that the sum, Eq. (XIII.12) need
include only β = 0. Comparing the coefficients of exp〈δ, ρ〉 we see that cβ=0 = 1 so

Q(ρ) =
∏

α>0

[exp
1

2
〈α, ρ〉 − exp−1

2
〈α, ρ〉]

=
∑

S∈W

(detS) exp〈Sδ, ρ〉 . (XIII.13)

We shall now use these results to analyze the character. We begin with
the Freudenthal recursion relation, Eq. (XI.45), together with

∑∞
k=−∞ nM+kα〈M +

kα, α〉 = 0 :

[〈Λ + δ, Λ + δ〉 − 〈δ, δ〉 − 〈M, M〉]nM

=
∑

α6=0

∞
∑

k=0

nM+kα〈M + κα, α〉. (XIII.14)

Mulitplying by exp〈M, ρ〉 and summing over M , we have
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[〈Λ + δ, Λ + δ〉 − 〈δ, δ〉]χ −
∑

M

nm〈M, M〉 exp〈M, ρ〉

=
∑

M

∑

α6=0

∞
∑

k=0

nM+κα〈M + κα, α〉 exp〈M, ρ〉 . (XIII.15)

Remembering that (see Eq. (IV.3))

〈M, N〉 =
∑

α∈Σ

α(hM )α(hN ) =
∑

α∈Σ

〈M, α〉〈α, N〉 , (XIII.16)

we derive the relations

∂

∂ρα

exp〈M, ρ〉 = 〈α, M〉 exp〈M, ρ〉 , (XIII.17a)

∑

α∈Σ

∂2

∂ρ2
α

exp〈M, ρ〉 = 〈M, M〉 exp〈M, ρ〉 . (XIII.17b)

Inserting this into Eq. (XIII.15) gives

[〈Λ + δ, Λ + δ〉 − 〈δ, δ〉 −
∑

α∈Σ

∂2

∂ρ2
α

]χ

=
∑

M

∑

α6=0

∞
∑

k=0

nM+κα〈M + κα, α〉 exp〈M, ρ〉 . (XIII.18)

To analyze the right hand side of Eq. (XIII.18), let us first fix α 6= 0 and consider
the SU(2) generated by Eα, E−α, and Hα. The irreducible representation of the full
algebra is, in general, a reducible representation of this SU(2). The dimensionality
nM is just the number of SU(2)-irreducible representations present at the weight
M . Thus we can proceed by calculating the contribution of each SU(2)-irreducible
representation to the sum for fixed M and α. The string of weights containing M
which correspond to an SU(2) irreducible representation are distributed symmet-
rically about a center point, M0 which can be expressed in terms of the highest
weight in the sequence, M∗, as
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M0 = M∗ − α
〈M∗, α〉
〈α, α〉 . (XIII.19)

Note that 〈M0, α〉 = 0.

Thus each weight in the sequence is of the form M0 + mα where m is an
integer or half-integer. The range of m is from −j to j, where again j is an integer
or half-integer. Now we can write the contribution of a single SU(2) irreducible
representation to the sum as

∑

M

∞
∑

k=0

〈M + κα, α〉 exp〈M, ρ〉

=
∑

m

j−m
∑

k=0

〈M0 + mα + kα, α〉 exp〈M0 + mα, ρ〉

=
∑

m

j−m
∑

k=0

〈α, α〉(m + k) exp〈M0, ρ〉 exp(m〈α, ρ〉)

= 〈α, α〉 exp〈M0, ρ〉
∑

m

j−m
∑

k=0

(m + k) exp(m〈α, ρ〉) .

(XIII.20)
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The double sum is most easily evaluated by multiplying first by exp〈α, ρ〉 − 1:

j
∑

m=−j

j−m
∑

k=0

(k + m) exp〈mα, ρ〉(exp〈α, ρ〉 − 1)

=

j
∑

m=−j

j−m
∑

k=0

(m + k) exp〈(m + 1)α, ρ〉

−
j−1
∑

m=−j−1

j−m−1
∑

k=0

(m + k + 1) exp〈(m + 1)α, ρ〉

= j exp〈(j + 1)α, ρ〉 +

j−1
∑

m=−j

[j − (j − m)] exp〈(m + 1)α, ρ〉

+

2j
∑

k=0

(k − j) exp〈−jα, ρ〉

=

j
∑

m=−j

m exp〈(m + 1)α, ρ〉 . (XIII.21)

Thus the contribution of one SU(2) irreducible representation to the original sum
is

〈α, α〉 exp〈M0, ρ〉
j
∑

m=−j

m exp〈(m + 1)α, ρ〉[exp〈α, ρ〉 − 1]−1

=

j
∑

m=−j

〈M, α〉 exp〈M + α, ρ〉[exp〈α, ρ〉 − 1]−1 . (XIII.22)

Summing over all SU(2) irreducible representations, and over all the roots, we have

[〈Λ + δ, Λ + δ〉 − 〈δ, δ〉 −
∑

α∈Σ

∂2

∂ρ2
α

]χ

=
∑

α6=0

∑

M

nM 〈α, M〉 exp〈M + α, ρ〉[exp〈α, ρ〉 − 1]−1 . (XIII.23)
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From the definition of Q, we see that

∏

α6=0

[exp〈α, ρ〉 − 1] = ηQ2(ρ) (XIII.24)

where η is +1 if the number of positive roots is even and −1 if it is odd. Thus

∂

∂ρβ

log ηQ2(ρ) =
∑

α6=0

exp〈α, ρ〉
exp〈α, ρ〉 − 1

〈α, β〉 (XIII.25)

and
∂

∂ρβ

exp〈M, ρ〉 = 〈β, M〉 exp〈M, ρ〉 (XIII.26)

so

∑

M

∑

α6=0

nM 〈α, M〉 exp〈M + α, ρ〉[exp〈α, ρ〉 − 1]−1

=
∑

β

∂

∂ρβ

log ηQ2(ρ)
∂

∂ρβ

χ

= 2Q−1
∑

β

∂

∂ρβ

Q
∂

∂ρβ

χ

= Q−1





∑

β

∂2

∂ρ2
β

(Qχ) − Q
∑

β

∂2

∂ρ2
β

χ − χ
∑

β

∂2

∂ρ2
β

Q



 . (XIII.27)

Combining these results, we have the differential equation

〈Λ + δ, Λ + δ〉Qχ = χ



〈δ, δ〉 −
∑

β

∂2

∂ρ2
β



Q +
∑

β

∂2

∂ρ2
β

Qχ . (XIII.28)

From the relation

Q(ρ) =
∑

S∈W

(detS) exp〈Sδ, ρ〉 , (XIII.29)

it follows that
∑

β

∂2

∂ρ2
β

Q(ρ) = 〈δ, δ〉Q(ρ) , (XIII.30)

where we have used the orthogonality of the S’s. Altogether then we have

∑

β

∂2

∂ρ2
β

Qχ = 〈Λ + δ, Λ + δ〉Qχ . (XIII.31)
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Now the function Q(ρ)χ(ρ) is alternating since it is the product of an alter-
nating function and an invariant one. Since

χ(ρ) =
∑

M

nM exp〈M, ρ〉 , (XIII.32)

and
Q(ρ) =

∑

S∈W

(detS) exp〈Sδ, ρ〉 , (XIII.33)

the product must be of the form

Q(ρ)χ(ρ) = σ
∑

N

cN exp〈N, ρ〉 , (XIII.34)

where N is of the form M + Sδ where M is a weight and where S is in the Weyl
group. Substituting into the differential equation, we see that M contributes only
if

〈S−1M + δ, S−1M + δ〉 = 〈Λ + δ, Λ + δ〉 . (XIII.35)
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In fact, we can show that Eq. (XIII.35) is satisfied only when S−1M = Λ.
We first note that 〈SM + δ, SM + δ〉 is maximized for fixed M when SM has only
non-negative Dynkin coefficients. Indeed if hi = 2hαi

/〈αi, αi〉 and if M(hi) < 0,
then 〈SiM + δ, SiM + δ〉 − 〈M + δ, M + δ〉 = 〈−M(hi)αi, 2M + 2δ − M(hi)αi〉 =
−〈αi, αi〉M(hi) > 0. Now consider M < Λ with M(hi) ≥ 0. Then, by similar
arguments, it is easy to show that 〈Λ + δ, Λ + δ〉 > 〈M + δ, M + δ〉. It follows that
the sum in Eq. (XIII.34) need contain only the single term for N = Λ + δ. By
comparison with the definitions of Q(ρ) and χ(ρ), it is easy to see that the overall
coefficient is unity, so

Q(ρ)χ(ρ) =
∑

S∈W

(detS) exp〈Λ + δ, Sρ〉 . (XIII.36)

This then yields Weyl’s character formula

χ(ρ) =

∑

S∈W (detS) exp〈Λ + δ, Sρ〉
∑

S∈W (detS) exp〈δ, Sρ〉 . (XIII.37)

More useful for our purposes is the less general formula which gives the
dimension of an irreducible representation. It is clear that this dimension is the
value of χ(ρ = 0). This cannot be obtained simply by setting ρ = 0, but must be
obtained as a limit. We choose ρ = tδ and let t → 0. This gives

χ(tδ) =

∑

S∈W (detS) exp〈S(Λ + δ), tδ〉
∑

S∈W (detS) exp〈Sδ, tδ〉

=
Q(t(Λ + δ))

Q(tδ)

= exp〈−δ, tΛ〉
∏

α>0

exp〈α, t(Λ + δ)〉 − 1

exp〈α, tδ〉 − 1
. (XIII.38)

In this expression we can let t → 0 and find the dimensionality , dim R = χ(0):

dim R =
∏

α>0

〈α, Λ + δ〉
〈α, δ〉 . (XIII.39)
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To evaluate this expression, we write each positive root, α, in terms of the
simple roots αi:

α =
∑

i

ki
ααi . (XIII.40)

Suppose the Dynkin coefficients of Λ are Λ(hi) = Λi, where hi = 2hαi
/〈αi, αi〉.

Then we have

dim R =
∏

α>0

∑

i ki
α(Λi + 1)〈αi, αi〉
∑

i ki
α〈αi, αi〉

. (XIII.41)

The algebras An, Dn, E6, E7, and E8 have simple roots all of one size, so for them
we can drop the factors of 〈αi, αi〉 in Eq. (XIII.41).

Let us illustrate this marvelous formula with a number of examples. Consi-
der first SU(3), that is, A2. The simple roots are all the same size so we ignore the
factor 〈αi, αi〉. The positive roots are α1, α2, and α1+α2, which we shall abbreviate
here by (1), (2), and (12). Suppose the irreducible representation at hand has a
highest weight with Dynkin coefficients (m1, m2), then we compute

dim R =

(

m1 + 1

1

)(

m2 + 1

1

)(

m1 + m2 + 2

2

)

. (XIII.42)

From this example and the fundamental formula, Eq. (XIII.41), we see that the
rule for finding the dimensionality of an irreducible representation may be phrased
as follows: The dimension is a product of factors, one for each positive root of the

algebra. Each factor has a denominator which is the number of simple roots which

compose the positive root. The numerator is a sum over the simple roots in the

positive root, with each simple root contributing unity plus the value of the Dynkin

coefficient corresponding to the simple root. If the simple roots are not all the same

size, each contribution to the numerator and to the denominator must be weighted

by 〈αi, αi〉.
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Let us consider a more complicated application of Weyl’s formula. The
algebra G2 has, as we have seen, fourteen roots, of which six are positive. If the
simple roots are denoted α1 and α2 with the latter being the smaller, then the
square of α1 is three times larger than that of α2. The positive roots are α1, α2,
α1 +α2, α1 +2α2, α1 +3α2, and 2α1 +3α2, which we denote here (1), (2), (12), (122),
(123), and (1223). We compute below the dimensions of the representations with
the highest weights (0,1) and (1,0), where the first entry pertains to α1 and the
second to α2.

(0, 1) (1, 0)

(1), (2) 3
3

2
1

3(2)
3

1
1

(12) 3+2
3+1

3(2)+1
3+1

(122) 3+2+2
3+1+1

3(2)+1+1
3+1+1

(123) 3+2+2+2
3+1+1+1

3(2)+1+1+1
3+1+1+1

(1223) 3+3+2+2+2
3+3+1+1+1

3(2)+3(2)+1+1+1
3+3+1+1+1

dim = 7 dim = 14

As yet another example, we consider SO(10), that is, D5. The simple roots
are numbered so that α4 and α5 are the ones which form the fork at the end
of the Dynkin diagram. There are 45 roots of which 20 are positive. Below we
calculate the dimensionality of the representations with highest weights (1,0,0,0,0),
(0,0,0,0,1), and (0,0,0,0,2).

(1, 0, 0, 0, 0) (0, 0, 0, 0, 1) (0, 0, 0, 0, 2)

(1), (2), (3), (4), (5) 2 2 3

(12), (23), (34), (35) 3
2

3
2

4
2

(123), (234), (235), (345) 4
3

4
3

4
3

5
3

5
3

(1234), (2345), (1235) 5
4

5
4

5
4

5
4

6
4

6
4

(12345), (23245) 6
5

6
5

6
5

7
5

7
5

(123245) 7
6

7
6

8
6

(1223245) 8
7

8
7

9
7

dim R = 10 dim R = 16 dim R = 126
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With little effort, we can derive a general formula for the dimensionality of
an irreducible representation of SU(n), that is An−1. In the same notation as above,
the roots are (1), (2), . . . (12), (23), . . . (123), (234), . . . , (123 . . . n). We compute the
dimensionality for the representation whose highest weight is (m1, m2, . . . mn):

(1), (2), . . . (n) m1+1
1

m2+1
1 . . . mn+1

1

(12), (23), . . . (n − 1 n) m1+m2+2
2

m2+m3+2
2

mn−1+mn+2
2

. . .

(12 . . . n) m1+m2+...mn+n
n

It is a simple matter to multiply all these factors to find the dimension of the
representation.

We can recognize the correspondence between the Dynkin notation and the
more familiar Young tableaux if we start with the fundamental representation,
(1, 0, . . . 0), and take the k-times anti-symmetric product of this representation with
itself to obtain (0, 0, . . . , mk = 1, 0 . . .0). This corresponds to the tableau with one
column of k boxes. More generally, (m1, m2, . . .mn) corresponds to the tableau
with mk columns of k boxes.
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References

We follow closely Jacobson’s version of the Freudenthal derivation of the Weyl
formula, except that we have adopted a less formal language. See JACOBSON,pp.
249–259.

Exercises

1. Determine the dimensionality of the SO(10) representations (2, 0, 0, 0, 0) and
(0, 1, 0, 0, 0).

2. Determine the dimensionality of the E6 representations (1, 0, 0, 0, 0, 0) and
(0, 0, 0, 0, 0, 1).

3. Show that the E6 representation (11, 12, 11, 12, 12, 11) has a dimensionality
divisible by 137.
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XIV. Reducing Product Representations

In Chapter X we began the consideration of finding the irreducible compo-
nents of a product representation. The procedure for SU(2) is familiar and trivial.
The product of the representations characterized by j1 and j2, the maximal values
of Tz, contains the irreducible representations for j such that |j1 − j2| ≤ j ≤ j1 + j2
once each (of course we take only integral j if j1 + j2 is integral and j half inte-
gral otherwise). For SU(n), the reduction is most easily obtained by the method
of Young Tableaux. The general solution to the problem of finding the irreducible
components of the product of two irreducible representations of a simple Lie algebra
can be obtained from the Weyl character formula, but the result (Kostant’s formula)
involves a double sum over the Weyl group and is not particularly practical. In this
chapter, we introduce some techniques which are sufficient for solving the problem
in most cases of moderate dimensions.
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Of course we already have sufficient tools to solve the problem by brute
force. We can calculate all the weights of the representations associated with highest
weights Λ1 and Λ2, and using the Freudenthal recursion relations we can determine
the multiplicity of each weight. Then the multiplicity of the weight M in the product
representation is found by writing M = M1 + M2, where M1 and M2 are weights
of the two irreducible representations. The multiplicity of the weight M in the
product representation is

nM =
∑

M=M1+M2

nM1
nM2

(XIV.1)

where nM1
and nM2

are the multiplicities of the weights M1 and M2. Now we know
Λ1 + Λ2 is the highest weight of one irreducible component so we can subtract its
weights (with proper multiplicities) from the list. Now the highest remaining weight
must be the highest weight of some irreducible component which again we find and
eliminate from the list. Continuing this way, we exhaust the list of weights, and
most likely, ourselves.

A more practical approach is to use some relations which restrict the possible
choices of irreducible components. The first such relation is the obvious one: Λ1 +
Λ2 is the highest weight of one irreducible component. The second relation is a
generalization of the rule demonstrated before for the anti-symmetric product of a
representation with itself.

Dynkin’s Theorem for the Second Highest Representation provides
a simple way to find one or more irreducible representations beyond the highest.
Suppose we have two irreducible representations with highest weights Λ1 and Λ2,
with highest weight vectors ξ0 and η0. We shall say that two elements of the
root space, β and α are joined if 〈α, β〉 6= 0. Moreover, we shall say that a chain
of simple roots, α1, α2, . . . αk, connects Λ1 and Λ2 if Λ1 is joined to α1 but no
other of the α’s, Λ2 is joined to αk and no other α in the chain, and each αi

is joined only to the succeeding and preceding α’s. We can represent this with
a Dynkin diagram by adding a dot for each of Λ1 and Λ2 and connecting them
by segments to the simple roots with which they are joined. Then a chain is the
shortest path between the weights Λ1 and Λ2. For example, consider SU(8) and the
representations (1,1,0,0,0,0,0) and (0,0,0,0,2,1,0).
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Fig. V.1

Here {α2, α3, α4, α5} is a chain joining Λ1 and Λ2, but {α1, α2, α3, α4, α5} is not.

Dynkin’s theorem tells us that if α1, . . . αk is a chain joining Λ1 and Λ2, then
Λ1 +Λ2−α1−α2− . . .−αk is the highest weight of an irreducible representation in
the product representation formed from the irreducible representations with highest
weights Λ1 and Λ2. In the above example, the product representation contains
(1, 1, 0, 0, 2, 1, 0)− α2 − α3 − α4 − α5 = (2, 0, 0, 0, 1, 2, 0).

The theorem is proved by establishing that there is a weight vector with the
weight described by the theorem which is annihilated by all the raising operators
associated with the simple roots. Thus this weight vector generates, through the
lowering operators, a separate irreducible representation. Of course, there are other
weight vectors with the same weight which do not share this property.

We begin by constructing a sequence of weight vectors starting with ξ0. Since
〈Λ1, α1〉 6= 0 and must be non-negative, it is positive and thus Λ1 − α1 is a weight
and has a weight vector

ξ1 = E−α1
ξ0 . (XIV.2)

Also, since 〈Λ1, α2〉 = 0, Λ1 −α2 is not a weight. However, Λ1 −α1−α2 is a weight
since 〈Λ1 − α1, α2〉 = 〈−α1, α2〉 > 0. Proceeding in this way we construct

ξj = E−αj
ξj−1

= E−αj
. . . E−α1ξ0 . (XIV.3)

Any reordering of the lowering operators in the sequence results in the quantity
vanishing just as E−α2

ξ0 = 0.
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Now consider
Eαmξj = EαmE−αj

ξj−1. (XIV.4)

If m 6= j,
[

Eαm , E−αj

]

= 0 since αm − αj is not a root. Thus

Eαmξj = E−αj
Eαmξj−1 . (XIV.5)

If we continue commuting Eαm through until it hits ξ0, we get zero since ξ0 cor-
responds to the highest weight. The only alternative is that E−αm occurs and we
take the term

E−αj
. . . [Eαm , E−αm ] . . . E−α1ξ0 . (XIV.6)

But this vanishes since the commutator is just an H which we can move outside
(picking up some constant terms) leaving a series of Eα’s which are not in the proper
order. Thus Eαmξj = 0 unless m = j.

In the event m = j, we compute

Eαj
ξj =

[

Hαj
+ E−αj

Eαj

]

ξj−1

= Hαj
ξj−1

= 〈Λ1 − α1 . . . − αj−1, αj〉ξj−1

= −〈αj−1, αj〉ξj−1 (j > 1)

Eα1
ξ1 = 〈Λ1, α1〉ξ0 . (XIV.7)

At the other end of the chain we have an analogous situation. We define

E−αk
η0 = η1

E−αk−j
ηj = ηj+1 (XIV.8)
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and find

Eαmηk−j+1 = 0. (m 6= j),

Eαj
ηk−j+1 = −〈αj+1, αj〉ηk−j (j < k)

Eαk
η1 = 〈Λ2, αk〉η0 . (XIV.9)

We are now in a position to establish the existence of a vector with weight
Λ1 + Λ2 − α1 − . . . − αk which is annihilated by every Eαj

, for αj a simple root.

This will then be a weight vector for the highest weight of the desired irreducible
representation. The most general weight vector with this weight is, using the results
of the discussion above,

ζ =

k
∑

s=0

csξs ⊗ ηk−s . (XIV.10)

We simply choose the coefficients so that the vector is annihilated by every raising
operator. For j 6= 1, k:

Eαj
ζ = cjEαj

ξj ⊗ ηk−j + cj−1ξj−1 ⊗ Eαj
ηk−j+1

= [−cj〈αj−1, αj〉 − cj−1〈αj , αj+1〉]ξj−1 ⊗ ηk−j

= 0 . (XIV.11)

Thus for j 6= 1, k
cj〈αj−1, αj〉 + cj−1〈αj , αj+1〉 = 0 . (XIV.12)

Similarly, considering j = 1 and j = k,

c1〈Λ1, α1〉 − c0〈α1, α2〉 = 0 ,

−ck〈αk, αk−1〉 + ck−1〈Λ2, αk〉 = 0 . (XIV.13)
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It is clear we can solve these equations, say with c0 = 1. Thus ζ exists and so does
the asserted representation.

The second technique we use to reduce product representations is Dynkin’s

method of parts. This is very easy to apply. If some of the dots in a Dynkin
diagram of, say, a simple Lie algebra are deleted, the result is the diagram of a
semi-simple subalgebra of the original algebra. If the original diagram was marked
with integers to indicate an irreducible representation, the truncated diagram will
represent a particular irreducible representation of the subalgebra. Now if we con-
sider two irreducible representations of the original algebra there are associated two
irreducible representations of the subalgebra. If we compare the product repre-
sentations formed by both the representations of the full algebra and those of the
subalgebra, it turns out that each irreducible component of the product representa-
tion of the subalgebra has a diagram which is a “part” of a diagram of an irreducible
component of the product representation of the full algebra in the sense that it is
obtained again by deleting the same dots as before.

The utility of this technique lies in the possibility that the subalgebra’s prod-
ucts may be easier to deal with than those of the full algebra. In particular, if we
delete some dots so that the remaining algebra is in the series An, the products can
be calculated using the well-known technique of Young tableaux. For example, by
deleting one dot from E6 we get A5, D5, A4 + A1, or A2 + A2 + A1, each of which
is somewhat easier to deal with.

Before proving the correctness of the method of parts, let us consider an
example. As a preliminary, note that for D5, i.e. SO(10), the square of the
ten-dimensional representation, (1,0,0,0,0) is given by (2,0,0,0,0) + (0,1,0,0,0) +
(0,0,0,0,0). This is easy to see because the first piece follows from the rule for the
highest weight of a product representation. The second follows for the rule for the
second highest weight, or the rule for the anti-symmetric product of an irreducible
representation with itself. Use of the Weyl dimension formula reveals that the di-
mension of the (2,0,0,0,0) representation is 54 and that of the (0,1,0,0,0) is 45, so the
remaining representation is one dimensional, i.e. it is (0,0,0,0,0). (Of course, these
results can be obtained by more elementary means!) Now let us try to compute the
square of the E6 representation (1,0,0,0,0,0). This is the smallest representation of
E6, with dimension 27. Again the rules for the highest weight and second highest
weight give (2,0,0,0,0,0) and (0,1,0,0,0,0) as irreducible components of the
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product representation. A computation reveals their dimensions to be 351 (both
of them!). Thus the remaining representation is 27 dimensional. Is it (1,0,0,0,0,0)
or (0,0,0,0,1,0)? Let us use the method of parts, deleting the fifth simple root to
leave us with the diagram for D5. Now we know that (1,0,0,0,0) squared in D5 is
(2,0,0,0,0) + (0,1,0,0,0) + (0,0,0,0,0). The method of parts tells us that each of
these can be obtained from the irreducible representations in the E6 product by
deleting the fifth root. This clearly works for the first two. Moreover, we see that
we must choose (0,0,0,0,1,0) as the final representation of E6.

We proceed to a more formal consideration of the method of parts. Let G be
a simple Lie algebra with a basis of simple roots {αi}. Select a subset, {βj} ⊂ {αi}
and let G′ be the semi-simple algebra which is generated by the eβj

’s and e−βj
’s.

The Cartan subalgebra, H ′ of G′ is contained in the Cartan subalgebra, H of G.
The Dynkin diagram for G′ is obtained from that of G by deleting the appropriate
dots.

Suppose M is a weight of a representation of G and φM is an associated
weight vector:

HφM = M(h)φM . (XIV.14)

Then φM is a weight vector for the induced representation of G′, since if h′ ∈ H ′,

H ′φM = M(h′)φM . (XIV.15)

Now the weight in the induced representation, M , has the property M(h′) = M(h′)
but differs from M because it can be expressed entirely in terms of the βj ’s. If we
write

M = [M −
∑

i,j

βi〈M, βj〉〈βj , βi〉−1]

+
∑

i,j

βi〈M, βj〉〈βj , βi〉−1 . (XIV.16)
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we see that the second term is precisely M . This is so because every h′ is a linear
combination of hβ ’s and because the first term vanishes on every hβ.

We see from Eq. (XIV.16) that M has exactly the same Dynkin coefficients
with respect to the β’s as M itself. The Dynkin coefficients with respect to G′

are obtained simply by dropping the requisite coefficients from those of M . In
particular, if Λ is the highest weight of a representation of G, Λ is a highest weight
of one of the irreducible representations contained in the representation of G′ arising
from the representation of G. For example, the (1,1) representation of A2 (SU(3))
contains the (1) representation of A1 (SU(2)) when we obtain the SU(2) by deleting
one dot from the Dynkin diagram of SU(3).

The representation associated with Λ is obtained by operating on the weight
vector for Λ with all the lowering operators Eαi

, αi ∈ Σ′. It is easy to see that for
all vectors φ in this representation, if αj /∈ Σ′ then Eαj

φ = 0 .

Now consider two irreducible representations, RΛ1
and RΛ2

of G, where
Λ1 and Λ2 are their highest weights. Associated with these are two irreducible
representations of G′, RΛ′

1
and RΛ′

2
. Now consider the product representations

RΛ1
× RΛ2

and RΛ′
1
× RΛ′

2
. In general these are both reducible:

RΛ1
× RΛ2

= RΛa
+ RΛb

+ . . . (XIV.15)

and
RΛ′

1
× RΛ′

2
= RΛ′

a
+ RΛ′

b
+ . . . . (XIV.16)

We want to show that for some Λa, Λa = Λ′
a, etc. Now consider the highest weight

vector of RΛ′
a
. It is annihilated by Eαi

, αi ∈ Σ′ and also by all the Eαj
, αj ∈ Σ.

Thus it is a highest weight also for G as well as for G′, and thus defines one of
the RΛa

’s. Thus every scheme of RΛ′
1
× RΛ′

2
corresponds to one of the schemes of

RΛ1
× RΛ2

with the appropriate dots deleted.
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In reducing product representations for SU(2), it is clear that the product
of irreducible representations contains only either integral spin or half-integral spin
representations. In Dynkin language, the Cartan matrix is the number 2. The
Dynkin coefficient of the highest weight is a single integer. The lower weights are
obtained by subtracting the 2 from the highest weight. Thus if the coefficient of
the highest weight is odd, the coefficient of every weight is odd. The oddness or
evenness of the the two irreducible representations thus determines the oddness or
evenness of all the irreducible representations in their product.

The analogous concept for SU(3) is triality. The fundamental representation
is said to have triality +1. Every weight in this representation is obtained from (1,0)
by subtracting a row of the Cartan matrix. Now consider the quantity 1Ai1 +2Ai2.
For i=1, this is zero, while for i = 2, it is three. Thus if we calculate for any weight
(a1, a2) of an irreducible representation the quantity a1+2a2(mod 3), it must be the
same as it is for the highest weight. Thus for the three dimensional representation
we have (1,0), (-1,1), and (0,-1), where a1 + 2a2 is 1,1, and -2. It is clear that
the triality, a1 + 2a2(mod 3), of a representation in the product of two irreducible
representations is the sum of the trialities (mod 3) of the components.

If we look at the Cartan matrix for An, we see that
∑

j jAij = 0(mod n+1).
Thus each irreducible representation of An can be characterized by a number
C ≡ ∑

j jaj(mod n + 1) where the highest weight of the representation has co-
efficients (a1, a2, . . . an). We see that every weight in the irreducible representation
will have the same value for C. For a product of representations, R1 and R2,each
irreducible component has the value C ≡ C(R1) + C(R2). For example, consider
5∗ × 5∗ in SU(5), that is (0,0,0,1) × (0,0,0,1) = (0,0,0,2) + (0,0,1,0). We have
C((0, 0, 0, 0, 1)) = 4, C((0, 0, 0, 2)) = 8 ≡ 3(mod 5), C((0, 0, 1, 0)) = 3. We refer to
the irreducible representations with a fixed value of C as conjugacy classes.

For Bn, there are two conjugacy classes which are given by C = an(mod 2),
since the last column of the Cartan matrix is given entirely by even integers. If
C = 1, the representation is a spinor representation. This nomenclature makes
sense even for B1 which is the complex form of O(3). The spinor representations
are seen to be the half-integral angular momentum representations.

For the algebras Cn, we take C = a1 +a3 +a5 + . . . (mod 2) .We can see that
this will work by taking the sum of the first, third, fifth, etc. elements in a row of
the Cartan matrix and noticing that its value is always even.
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The algebra Dn is slightly more complicated. First we notice that for any
row of the Cartan matrix, the sum of the last two entries is an even number. Thus
we can take C1 = an−1 + an(mod 2). Next consider the case n even. If we take the
sum of the first, third, fifth,... elements of a row of the Cartan matrix, it is always
even. Thus for n even, we choose C2 = a1 + a3 + . . . an−1 (mod 2). For n odd, we
take C2 = a1 + a3 + . . . an−2 + (an−1 − an)/2(mod 2).

As an example, consider the SO(10) decomposition of (0,0,0,1,0)× (0,0,0,1,0),
i.e. 16 × 16. The 16 has C1 = 1 and C2 = 1

2 . Thus the irreducible representations
in the product will have C1 = 2 ≡ 0(mod 2) and C2 = 1. The actual decomposition
is (0,0,0,2,0) + (0,0,1,0,0) + (1,0,0,0,0), each piece of which has the proper values
of C1 and C2.

An examination of the Cartan matrix for E6 reveals that Ai1 + Ai4 = Ai2 +
Ai5(mod 3), so we can take C = a1 − a2 + a4 − a5(mod 3). Similarly, for E7, we
see that C = a4 + a6 + a7(mod 2) determines the conjugacy classes. The algebras
G2, F4, and E8 have only a single conjugacy class.

As an example of the techniques discussed in this chapter, let us consider the
decomposition of (2, 0, 0, 0, 0, 0)×(2, 0, 0, 0, 0, 0) = 351×351 in E6. The (2,0,0,0,0,0)
is in the conjugacy class C ≡ 2(mod 3), so all the components in the product will
be in the conjugacy class C ≡ 4 ≡ 1(mod 3). Clearly one irreducible component
has highest weight (4,0,0,0,0,0). Using the rule for the second highest weight we
find that (4, 0, 0, 0, 0, 0)− (2,−1, 0, 0, 0, 0) = (2, 1, 0, 0, 0, 0) is a highest weight of an
irreducible component. Next we use the method of parts, striking the sixth root to
reduce E6 to A5. The products in A5 may be calculated by Young tableaux, with
the result (2, 0, 0, 0, 0) × (2, 0, 0, 0, 0) = (4, 0, 0, 0, 0) + (2, 1, 0, 0, 0) + (0, 2, 0, 0, 0).
Thus the E6 product contains (4,0,0,0,0,0) + (2,1,0,0,0,0) +(0,2,0,0,0,X) where X
is a non-negative integer. Next, let us use the parts method, striking the fifth root
to reduce E6 to D5. Now we must calculate (2, 0, 0, 0, 0)× (2, 0, 0, 0, 0) = 54× 54 in
D5.

This subsidiary calculation is itself a useful example. The 54 in D5 has
C1 = 0 and C2 = 0, so the irreducible components of the product must have these
values as well. Certainly the D5 product contains (4,0,0,0,0) + (2,1,0,0,0) as we
see using the highest weight and second highest weight procedures. Using the parts
method to reduce D5 to A4 we see that the product must contain a term (0,2,0,0,W).
Since C1 ≡ 0, W is even. It is a fair bet that (0,2,0,0,2) has too high a dimension, so
we guess that (0,2,0,0,0) is in the product. Using the Weyl dimension formula, we
find the D5 values, dim(4,0,0,0,0)=660, dim(2,1,0,0,0)=1386, dim(0,2,0,0,0)=770.
This totals to 2816 so we need an additional 2916-2816=100. The smallest rep-
resentations in the proper conjugacy class are (0,0,0,0,0), (2,0,0,0,0), (0,1,0,0,0),
and (0,0,0,1,1) with dimensions 1, 54, 45, and 210 respectively. Thus we conclude
that in D5, (2, 0, 0, 0, 0)× (2, 0, 0, 0, 0) = (4, 0, 0, 0, 0)+ (2, 1, 0, 0, 0)+ (0, 2, 0, 0, 0)+
(2, 0, 0, 0, 0) + (0, 1, 0, 0, 0) + (0, 0, 0, 0, 0).
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Returning to E6, we note that the representation identified as (0,2,0,0,0,X)
must be (0,2,0,0,0,0) in order to account for the D5 representation (0,2,0,0,0).
Again, by comparison with the D5 representations, we know that the E6 product
must contain, at a minimum, the representations (2,0,0,0,T,0), (0,1,0,0,Y,0), and
(0,0,0,0,Z,0), where T,Y, and Z are non-negative integers. We can determine these
integers by considering the conjugacy classes. We have 2−T ≡ 1(mod 3),−1−Y ≡
1(mod 3), and − Z ≡ 1(mod 3). The smallest solutions are T=1, Y=1, and
Z=2. Thus we guess that the E6 decomposition is (2, 0, 0, 0, 0, 0)× (2, 0, 0, 0, 0, 0) =
(4, 0, 0, 0, 0, 0) + (2, 1, 0, 0, 0, 0) + (0, 2, 0, 0, 0, 0) + (2, 0, 0, 0, 1, 0) + (0, 1, 0, 0, 1, 0) +
(0, 0, 0, 0, 2, 0). Using the Weyl formula, the dimensions of these are determined to
be 351 × 351 = 19, 305 + 54, 054 + 34, 398 + 7, 722 + 7, 371 + 351 = 123, 201.

This example shows that the hardest work required in reducing such products
is simply the evaluation of the Weyl formula for the dimension.

One additional technique for reducing product representations is worth men-
tioning. We recall from Chapter XI the definition of the index of a representation,
φ:

Tr φ(x)φ(y) = lφ(x, y)2 (XIV.19)

where ( , )2 is proportional to the Killing form but normalized so that the largest
roots has a length squared of two.

Now suppose we have a representation which is the sum of two representa-
tions , φ1 and φ2. Then, clearly

lφ1+φ2
= lφ1

+ lφ2
. (XIV.20)
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On the other hand, for a product representation, we see that

lφ1⊗φ2
= Nφ1

lφ2
+ Nφ2

lφ1
(XIV.21)

where Nφ1
and Nφ2

are the dimensions of the representations. Since we know
how to compute the indices in terms of the Casimir operators, this can be used to
reduce significantly the possibilities for the irreducible components of the product
representation.
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Exercises

1. Reduce 16 × 16 [16 = (0, 0, 0, 0, 1)] in SO(10).

2. Reduce 14 × 14 [14 = (1, 0)] in G2. Check using indices.

3. Reduce 27 × 27′ [for 27 = (1, 0, 0, 0, 0, 0), 27′ = (0, 0, 0, 0, 1, 0)] in E6.
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XV. Subalgebras

Some examples may be illuminating as an introduction to the topic of sub-
algebras. Suppose we start with the algebra G = A5, i.e. SU(6), the traceless 6× 6
matrices. Now one subalgebra is obtained by considering only those matrices with
non-zero 4×4 and 2×2 diagonal pieces, and zeros in the 4×2 off- diagonal pieces. If
the two diagonal blocks are required to be traceless separately, then the restricted
set is the subalgebra G′ = A3 + A1 ⊂ A5 = G. It is clear that we can take as
the Cartan subalgebra H ′ ⊂ G′ the diagonal matrices, so H ′ ⊂ H . The dimension
of H ′ is one fewer than that of H since there is a one dimensional subspace of H
proportional to the diagonal element which is +1 for the first four components and
-2 on the last two.

The root vectors of G′ are just the root vectors of G which have non-zero
components only in the two diagonal blocks. If the space proportional to eα is
denoted Gα, we have
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G = H +
∑

α∈Σ

Gα (XV.1)

while for some set Σ′ ⊂ Σ
G′ = H ′ +

∑

α∈Σ′

Gα . (XV.2)

A subalgebra with this property is called regular. In addition to this SU(6) exam-
ple, the subalgebras we employed in the method of parts – which were obtained by
deleting dots from Dynkin diagrams – were regular. Not all subalgebras, however,
are regular.

Let us consider again A5 and a particular embedding of G′ = A2+A1(SU(3)×
SU(2)). We know that every matrix in the Lie algebra of SU(2) is a linear com-
bination of σ1, σ2, and σ3 and every matrix in the Lie algebra of SU(3) is a linear
combination of λ1, λ2, . . . λ8. Let us add to these σ0and λ0 which are the 3× 3 and
2 × 2 identity matrices. Now every 6 × 6 matrix can be written in terms of

[

λi 0

0 λi

]

,

[

λi 0

0 −λi

]

,

[

0 λi

λi 0

]

,

[

0 −iλi

iλi 0

]

,

i.e. σ0 ⊗ λi, σ3 ⊗ λi, σ1 ⊗ λi, σ2 ⊗ λi, i = 0, 1, . . .8. Now this is equivalent to
regarding the six dimensional vectors in the carrier space as having two indices,
with the σ acting on the first and the λ on the second.

Now suppose we consider only elements of the forms σ0 ⊗ λi and σi ⊗ λ0.
Then an element of one form commutes with an element of the other. Thus these
elements form a subalgebra which is A2+A1. The Cartan subalgebra of the A2+A1

has a basis σ3 ⊗ λ0, σ0 ⊗ λ3, σ0 ⊗ λ8. The root vectors are σ+ ⊗ λ0, σ− ⊗ λ0, σ0 ⊗
t+, σ0 ⊗ t−, σ0 ⊗ u+, σ0 ⊗ u−, σ0 ⊗ v+, and σ0 ⊗ v−. We see that H ′ ⊂ H . However,
the root vectors of G′ are not among those of G. Thus, for example,

σ+ ⊗ λ0 =

[

0 λ0

0 0

]

. (XV.3)
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We cannot write G′ in the form Eq. (XV.2), so the subalgebra is not regular.

The six dimensional representation of A5 gave a reducible representation of
the regular subalgebra, A3 + A1: 6 → (4, 1) + (1, 2). The non-regular subalgebra,
A2 + A1, gave an irreducible representation: 6 → (3, 2). As we shall see, this is
typical.

As a further example of regular and non-regular subalgebras, consider SU(2)
as a subalgebra of SU(3). If the SU(2) is generated by t+, t−, and tz, the SU(2) is a
regular subalgebra. On the other hand, there is a three dimensional representation
of SU(2). The 3 × 3 matrices of this representation are elements of SU(3) so this
provides a second embedding of SU(2) in SU(3), which is not regular. Under the
regular embedding, the 3 dimensional representation of SU(3) becomes a reducible
2 + 1 dimensional representation of SU(2), while under the second embedding, it
becomes an irreducible representation of SU(2).

It is clear that a moderate sized algebra may have an enormous number
of subalgebras. To organize the task of finding them we introduce the concept of
a maximal subalgebra. G′ is a maximal subalgebra of G if there is no larger
subalgebra containing it except G itself. Now we can proceed in stages finding the
maximal subalgebras, then their maximal subalgebras, and so on.

There is a slight flaw in this approach. A maximal subalgebra of a semi-
simple algebra need not be semi-simple. Consider, for example, SU(2) and the
subalgebra generated by t+ and tz . It is certainly maximal, since if we enlarge
it we shall have all of SU(2). However, the subalgebra is not simple because t+
generates an ideal in it. We shall generally restrict ourselves to the consideration
of maximal semi-simple subalgebras, that is, semi-simple algebras contained in no
other semi-simple subalgebras except the full algebra.

Dynkin introduced the notions of an R-subalgebra and an S-subalgebra.
An R-subalgebra is a subalgebra which is contained in some regular subalgebra.
An S-subalgebra is one which is not. The task then is to find the regular maximal
subalgebras and the maximal S-subalgebras. The regular subalgebras are more
easily dealt with.
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Suppose G′ is a regular subalgebra of a simple algebra G, Σ′ ⊂ Σ is the set
of its roots, and Π′ ⊂ Σ′ is a basis of simple roots for G′. Now if α′, β′ ∈ Π′, then
α′ − β′ /∈ Σ′. In fact α′ − β′ /∈ Σ, since if α′ − β′ ∈ Σ, [eα′ , e−β′] ∼ eα′−β′ so then
α′ − β′ ∈ Σ′. Thus to find regular subalgebras of G we seek sets Π′ ⊂ Σ such that
α′, β′ ∈ Π′ ⇒ α′ − β′ /∈ Σ. Then we take as G′ the subalgebra generated by the
eα′ , e−α′ , hα′ ∈ Π′.

An algorithm for this has been provided by Dynkin. Start with Π, the simple
roots of G. Enlarge it to Π by adding the most negative root in Σ. Now Π has the
property that if α′, β′ ∈ Π, then α′ − β′ /∈ Σ. However, Π is a linearly dependent
set. Thus, if we eliminate one or more vectors from Π to form Π′, it will have the
required properties. In general, Π′ will generate a semi-simple algebra, not a simple
one.

This procedure is easy to follow using Dynkin diagrams. We form the ex-

tended Dynkin diagram associated with Π by noting that the vector added to
Π is the negative of the highest weight ,γ, of the adjoint representation. Since we
know the Dynkin coefficients of this weight, it is easy to add the appropriate dot.
For Bn the adjoint representation has highest weight (0, 1, 0, . . .0), so the extended
diagram is

B+
n h

α1

h−γ

h

α2

. . . h

αn–1

x

αn
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Similarly, for Dn, the highest weight of the adjoint is (0, 1, 0, . . .0) so the extended
diagram is

D+
n h

α1

h−γ

h

α2

. . . h

αn–2

/
/
/
/
/

h

αn–1

\
\
\
\
\

h

αn

In an analogous fashion, we find the remaining extended diagrams:

#
#

#
#

aaaaaaaaaA+
n h

α1

h−γ

h

α2

. . . h

αn

C+
n h

−γ

x

α1

x

α2

. . . x

αn–1

h

αn

G+
2 h

−γ

h

α1

x

α2
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F+
4 h

−γ

h

α1

h

α2

x

α3

x

α4

E+
6 h

α1

h

α2

h−γ

hα6

h

α3

h

α4

h

α5

E+
7 h

−γ

h

α1

h

α2

hα7

h

α3

h

α4

h

α5

h

α6

E+
8 h

α1

h

α2

hα8

h

α3

h

α4

h

α5

h

α6

h

α7

h

−γ
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A few examples will make clear the application of these diagrams. By deleting
a single dot from the extended diagram for G2 we obtain in addition to the diagram
for G2 itself

h x

h h

Thus we see that A2 and A1 + A1 are regular subalgebras of G2. Starting with B6

we find among others, the subalgebra B3 + D3. In other words, we have O(13) ⊃
O(7) × O(6).

The An algebras are somewhat pathological. If we remove a single dot from
the extended diagram, the result is simply the original diagram. If we remove
two dots we obtain a regular subalgebra, but one that is maximal only among the
semi-simple subalgebras, not maximal among all the subalgebras. This is actually
familiar: from SU(5) one obtains not just SU(3) x SU(2), but also SU(3) x SU(2) x
U(1), which itself lies in a larger, non-semi-simple subalgebra of SU(5).

Dynkin’s rule1 for finding the maximal regular subalgebras is this: the reg-
ular semi-simple maximal subalgebras are obtained by removing one dot from the
extended Dynkin diagram. The non-semi-simple maximal regular subalgebras are
obtained by selecting one of the simple roots, α ∈ Π, and finding the subalgebra
generated by eα and hα, together with eβ , e−β, and hβ for all the simple roots β
other than α. Such a non-semi-simple algebra contains a semi-simple subalgebra
generated by excluding eα and hα as well. This may be maximal among the semi-
simple subalgebras, or it may be contained in an S-subalgebra.
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Dynkin’s rule has been shown to be not entirely correct.2 In particular, it
would have A3 + A1 maximal in F4 while in fact A3 + A1 ⊂ B4 ⊂ F4. Similarly,
A3 + A3 + A1 ⊂ D6 + A1 ⊂ E7 and in E8, A3 + A5 ⊂ D8, A1 +A2 + A5 ⊂ A2 + E6,
and A7 + A1 ⊂ E7 + A1.

In an analogy with the example SU(4)×SU(2) ⊂ SU(6), we see that SU(s)×
SU(t) ⊂ SU(s + t), O(s) × O(t) ⊂ 0(s + t), and Sp(2s) × Sp(2t) ⊂ Sp(2s + 2t),
where the embedding is the obvious one. Each of these gives a regular subalgebra
except for O(s)×O(t) when s and t are odd, as is easily verified from the extended
diagrams. The last embedding is thus an S-subalgebra.

We have already seen two examples of maximal S-subalgebras. One was the
embedding A2 + A1 ⊂ A5 which produced the decomposition of the fundamental
representation 6 → (3, 2). We can simplify the notation in this section by passing
from the Lie algebras to the associated groups. Thus we have SU(6) ⊃ SU(3) ×
SU(2). More generally, we have SU(st) ⊃ SU(s)×SU(t) as a (non-simple) maximal
S-subalgebra.

For the orthogonal groups we follow the path used in Chapter VIII. Rather
than require AtA = I, we consider the more general relation BtKB = K where K
is a symmetric n×n matrix. This is the same as taking all n×n matrices, B, which
preserve a symmetric bilinear form (φ, η) =

∑

i,j φiKijηj , Kij = Kji. Now consider
the groups O(s1)and O(s2) preserving (φ1, η1)1and (φ2, η2)2. If we consider the s1s2

dimensional space spanned by vectors like φ1 ⊗ φ2, we have a symmetric bilinear
form defined by (φ1 ⊗φ2, η1⊗ η2) = (φ1, η1)1(φ2, η2)2. The subgroup O(s1)×O(s2)
acts as B1 ⊗ B2(φ1 ⊗ φ2) = B1φ1 ⊗ B2φ2 for B1 ∈ O(s1) and B2 ∈ O(s2). It is
clear that this subgroup indeed leaves the symmetric bilinear form invariant and
thus O(s1) × O(s2) ⊂ O(s1s2). Indeed, it is a maximal S-subgroup.

In a similar fashion, we can consider Sp(2n) to be the set of 2n × 2n
matrices preserving an anti-symmetric bilinear form: (φ, η) = −(η, φ). Now if
we take Sp(2n1) × Sp(2n2) we will act on a space of dimension 4n1n2. With
(φ1 ⊗ φ2, η1 ⊗ η2) = (φ1, η1)1(φ2, η2)2 we see that the form is symmetric and
Sp(2n1) × Sp(2n2) ⊂ O(4n1n2). Analogously, Sp(2n) × O(s) ⊂ Sp(2ns) as a
maximal S-subgroup.

The other maximal S-subalgebra we have encountered is in the embedding
SU(2) ⊂ SU(3) whereby the three dimensional representation of SU(3) becomes
the three dimensional representation of SU(2). Since SU(2) has a three dimensional
representation by 3 × 3 matrices, it is bound to be a subalgebra of SU(3). More
generally, if G is a simple algebra with an n-dimensional representation, G ⊂ SU(n).
Is G then maximal in SU(n)? For the most part, the answer is this: if the n-
dimensional representation of G has an invariant symmetric bilinear form, G is
maximal in SO(n), if it has an invariant anti-symmetric bilinear form it is maximal
in Sp(n) (n must be even). If it has no invariant bilinear form, it is maximal



136 XV. Subalgebras

in SU(n). The exceptions to this are few in number and have been detailed by
Dynkin.3

Let us consider an example with SU(3), which has an eight dimensional
adjoint representation. Rather than think of the vectors in the eight dimensional
space as columns, it is convenient to think of them as 3 × 3 traceless matrices:

φ =
∑

i

φiλi (XV.4)

where the λi are those of Eq. (II.1). Now we remember that the adjoint represen-
tation is given by

ad xλi = [x, λi] . (XV.5)

The invariance of a symmetric form (φ, η) under an infinitesimal transformation
expB ≈ I + B yields

(Bφ, η) + (φ,Bη) = 0 . (XV.6)

For the adjoint representation, the linear tranformation B corresponding to an ele-
ment x of the Lie algebra is simply Bφ = [B, φ]. Now if we define

(φ, η) = Tr φη (XV.7)

the invariance of the form follows from the identity

Tr [x, φ] η + Tr φ [x, η] = 0 . (XV.8)
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Thus we see there is a symmetric invariant bilinear form for the adjoint represen-
tation and thus SU(3) ⊂ SO(8). Of course the demonstration is more general:
SU(n) ⊂ SO(n2 − 1).

It is clear that we must learn how to determine when an n-dimensional
representation of a simple Lie algebra admits a bilinear form and whether the form
is symmetric or anti-symmetric. As a beginning, let us consider SU(2) and in
particular the 2j + 1 dimensional representation. We shall construct explicitly the
bilinear invariant. Let

ξ =
∑

i

ciφi

η =
∑

i

diφi (XV.9)

where the φi are a basis for the representation space and

Tzφm =mφm

T+φm =
√

j(j + 1) − m(m + 1)φm+1

T−φm =
√

j(j + 1) − m(m − 1)φm−1 . (XV.10)

Suppose the bilinear form is

(ξ, η) =
∑

m,n

amncmdn . (XV.11)

Now the invariance of the form requires in particular

(Tzξ, η) + (ξ, Tzη) = 0 . (XV.12)

Thus in the sum we must have m + n = 0 so

(ξ, η) =
∑

m

amcmd−m . (XV.13)
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If we next consider the requirement

(T−ξ, η) + (ξ, T−η) = 0 , (XV.14)

we find that up to a multiplicative constant the bilinear form must be

(ξ, η) =
∑

m

(−1)mcmd−m . (XV.15)

We see that we have been able to construct a bilinear invariant and moreover, if
j is integral, the form is symmetric under interchange of ξ and η, while if j is
half-integral it is anti-symmetric.

The generalization to all the simple Lie algebras is only slightly more com-
plicated. From the analogs of Eq. (XV.12), we conclude that we can form a bilinear
invariant only if for every weight M in the representation, −M is a weight also. To
determine which irreducible representations have this property it suffices to consider
the representations from which we can build all others. For example, for An, the rep-
resentation with highest weight (1, 0, . . . 0) does not contain the weight (−1, 0, . . .0)
but instead (0, 0, . . . , 0,−1). On the other hand, the adjoint representation whose
highest weight is (1, 0, . . . 0, 1) does contain the weight (−1, 0, . . . 0,−1). More gener-
ally for An, if the highest weight has the symmetric configuration (n1, n2, . . . n2, n1),
the weights do occur in opposite pairs, M and −M .

The general result is the following. Representations of Bn, Cn, D2n, G2, F4,
E7, and E8 always have an invariant bilinear form. The algebras An, D2n+1, and E6

have invariant bilinear forms for representations of the forms:

An

m1

h

α1

m2

h

α2

. . .

m2

h

αn−1

m1

h

αn
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Dn

m1

h

α1

m2

h

α2

. . .

m′

h

αn–2

/
/
/
/
/

m

h

αn–1

\
\
\
\
\
m

h

αn

E6

m1

h

α1

m2

h

α2

m hα6

m3

h

α3

m2

h

α4

m1

h

α5

Now as for the symmetry or anti-symmetry of the bilinear form it turns out
to be determined by the number of levels in the weight diagram. Dynkin calls the
number of levels less one the height of the representation. Thus for SU(2), the
2j + 1 dimensional representation has a height 2j. For all the simple Lie algebras,
just as for SU(2), if the height is even, the form is symmetric, and if the height
is odd, the form is anti-symmetric. Now Dynkin has determined the heights of
the irreducible representations of the simple Lie algebras in terms of their Dynkin
coefficients.4 The results are summarized in the following Table:

An (n, (n − 1)2, . . . , n)

Bn (1 · 2n, 2 · (2n − 1), . . . , (n − 1)(n + 2), n(n + 1)/2)

Cn

(

1 · (2n − 2), 2(2n− 2), . . . , (n − 1)(n + 1), n2
)

Dn (1 · (2n − 2), 2 · (2n − 3), . . . , (n − 2)(n + 1), n(n − 1)/2, n(n− 1)/2)

G2 (10, 6)

F4 (22, 42, 30, 16)

E6 (16, 30, 42, 30, 16, 22)

E7 (34, 66, 96, 75, 52, 27, 49)

E8 (92, 182, 270, 220, 168, 114, 58, 136)
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The height of the representation is calculated by multiplying each Dynkin
coefficient by the number from the table corresponding to its location. Thus, for
example, the adjoint representation of An, with Dynkin coefficients (1, 0, . . . 0, 1)
has height 2n. It is clear that to determine whether a bilinear form is symmetric or
anti-symmetric we need only consider those entries in the table and those Dynkin
coefficients which are odd. It is apparent that since SU(3) representations have a
bilinear form only if the Dynkin coefficients of the highest weight are of the form
(n, n), all such bilinear forms are symmetric. On the other hand, we see that SU(6)
has a representation with highest weight (0, 0, 1, 0, 0) and dimension 20 which has
an anti-symmetric bilinear invariant. Thus SU(6) ⊂ Sp(20).

There are a few instances in which the procedure described above does not
identify a maximal subalgebra. These exceptions have been listed by Dynkin5 and
we shall not dwell on them here. One example will suffice to indicate the nature
of these exceptions. There is a 15 dimensional representation of A2, which has a
highest weight (2, 1). We would expect this to be maximal in A14 since it has no
bilinear invariant. In fact, there is an embedding of A2 in A5 under which the
15 dimensional representation of A5, (0, 1, 0, 0, 0), becomes the fifteen dimensional
representation of A2. Thus we have the chain A2 ⊂ A5 ⊂ A14. We can understand
the embedding of A2 in A5 as follows. Since A2 has a six dimensional representation,
it is maximal in A5 , i.e. SU(6). The anti-symmetric product of the six with itself,
in both A2 and A5 is an irreducible fifteen dimensional representation. Thus the
embedding which maps the six into the six, also maps the fifteen into the fifteen.

It is clear that the approach above will not help us find the S-subalgebras
of the exceptional Lie algebras. Fortunately, this problem has been solved, again
by Dynkin. In order to display his results we must introduce some additional
notation. In particular, we need a means of specifying a particular embedding of a
subalgebra G′ in an algebra, G. This is done with the index of the embedding.
In Chapter XI, we introduced the concept of the index of a representation, which is
simply the ratio of the bilinear form obtained from the trace of the product of two
representation matrices to the bilinear form which is the Killing form normalized in
a particular way. Here we define the index of an embedding to be the ratio of the
bilinear form on G′ obtained by lifting the value of the Killing form on G to the
Killing form on G′ itself:
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jf (x′, y′)′2 = (f(x′), f(y′))2 (XV.16)

where jf is the index of the embedding and f : G′ → G is the embedding. As
we have seen, on a simple Lie algebra all invariant bilinear forms are proportional,
so this definition makes sense. Now suppose φ is a representation of G, that is, a
mapping of elements of G onto a space of linear transformations. Then φ ◦ f is a
representation of G′. Moreover, for x′, y′ ∈ G′:

Tr φ(f(x′))φ(f(y′)) =lφ◦f(x′, y′)′2

=lφ(f(x′)), f(y′))2

=lφjf (x′, y′)′2 (XV.17)

so we see that the index of the embedding is determined by the ratio of the indices
of the representations φ and φ ◦ f :

jf =
lφ◦f

lφ
. (XV.18)

Consider G2, which we know has a 7 dimensional representation. Thus we
might hope to embed A1, which has a 7 dimensional representation, in G2. This is
in fact possible. Now we compute the index of the seven dimensional representation
of A1 according to the methods of Chapter XI: l = 6 × 7 × 8/6 = 56. For the
seven dimensional representation of G2 we have l = 7〈Λ, Λ + 2δ〉/14 = 2. See the
Problems following Chapter XI. Thus the index of the embedding is 28. Dynkin
indicates this subalgebra by A28

1 . If there is more than one subalgebra with the
same index, we can use primes to indicate this.
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Having established this notation, we list the results of Dynkin 3for the max-
imal S-subalgebras of the exceptional Lie algebras:

Maximal S-subalgebras of Exceptional Lie Algebras

G2 A28
1

F4 A156
1 , G1

2 + A8
1

E6 A9
1, G

3
2, C

1
4 , G1

2 + A2′′
2 , F 1

4

E7 A399
1 , A231

1 , A21
2 , G1

2 + C1′′
3 , F 1

4 + A3′′
2 , G2

2 + A7
1, A

24
1 + A15

1

E8 A1240
1 , A760

1 , A520
1 , G1

2 + F 1
4 , A6′

2 + A16
1 , B12

2

We summarize here the results on the maximal semi-simple subalgebras of
the simple Lie algebras:

1. Regular subalgebras are found using the algorithm of extended Dynkin dia-
grams.

a. Dropping a dot from an extended diagram yields a regular subalgebra
which is semi-simple and maximal unless it is one of the exceptions
mentioned on pp. 134 - 135.

b. Dropping a dot from a basic diagram yields a subalgebra which may
be maximal among the semi-simple subalgebras.

2. Non-Regular (S-subalgebras)

a. Of classical algebras:

i. Non-simple: SU(s) × SU(t) ⊂ SU(st), SO(s) × SO(t) ⊂ SO(st),
Sp(s)× Sp(t) ⊂ SO(st), Sp(s)× SO(t) ⊂ Sp(st) , and O(s)×O(t) ⊂
O(s + t) for s and t odd.

ii. Simple: If G has an n dimensional representation it is maximal in
SU(n), SO(n), or Sp(n), unless it is one of the few exceptions listed
by Dynkin. If the representation has a symmetric bilinear form the
subalgebra is maximal in SO(n). If it has an anti-symmetric bilinear
form, it is maximal in Sp(n). If it has no bilinear form, it is maximal
in SU(n).

b. Of exceptional Lie algebras: the maximal S-subalgebras are listed
above.
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Footnotes

1. DYNKIN II, p. 148.

2. GOLUBITSKY and ROTHSCHILD.

3. DYNKIN III.

4. DYNKIN III, p. 365.

5. DYNKIN II, p. 231.
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Exercises

1. Find the maximal semi-simple subalgebras of A4.

2. Find the maximal semi-simple subalgebras of D5. Note that it is necessary
to consider some subalgebras which are only maximal among the semi-simple
subalgebras. ans. A3 + A1 + A1, A4, B4, D4, A1 + B2, B2 + B2.

3. Find the maximal semi-simple subalgebras of F4.

4. Find the maximal semi-simple subalgebras of B2.
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XVI. Branching Rules

Having determined, with much help from E. B. Dynkin, the maximal semi-
simple subalgebras of the simple Lie algebras, we want to pursue this further to
learn how an irreducible representation of an algebra becomes a representation of
the subalgebra. To do this we shall have to be more precise about the embedding
of the subalgebra in the algebra. Indeed, as we have already seen, the three dimen-
sional representation of SU(3) may become either a reducible representation or an
irreducible representation of SU(2) depending on the embedding.

We start with a subalgebra G′ embedded in the algebra G by a mapping
f : G′ → G, where f is a homomorphism, that is, it preserves the commutation
relations:

f([x′, y′]) = [f(x′), f(y′)] , x′, y′ ∈ G′ . (XVI.1)

Moreover, we can arrange it so that the Cartan subalgebra H ′ ⊂ G′ is mapped by
f into the Cartan subalgebra H ⊂ G. Note that if φ is a representation of G, then
φ ◦ f is a representation of G′.

If we are to make progress, we must deal not only with the algebras but with
the root spaces H∗ ′

0 and H∗
0 as well. Given the mapping f , we define f∗ : H∗

0 → H∗ ′
0

by
f∗ ◦ ρ = ρ ◦ f (XVI.2)
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where ρ ∈ H∗
0 . That is to say, if h′ ∈ H ′

(f∗ ◦ ρ)(h′) = ρ(f(h′)) . (XVI.3)

Instead of thinking of G′ as external to G, it is easier to imagine it already
within G. Then f : H ′ → H simply maps H ′ onto itself as the identity. We recall
that there is a one-to-one correspondence between the elements of the root space,
ρ ∈ H∗

0 and the elements hρ of the Cartan subalgebra. This one-to-one mapping
connects to H ′ a space which we regard as H∗ ′

0 . Now let us decompose H∗
0 as the

sum of H∗ ′
0 and a space H∗ orthogonal to it. That is, if τ ∈ H∗ ′

0 and κ ∈ H∗, then
〈τ, κ〉 = 0. Then the elements of H∗ are functionals which when applied to H ′ give
zero. This is so because if κ ∈ H∗ corresponds to hκ ∈ H and τ ∈ H∗ ′

0 corresponds
to hτ ∈ H ′, then κ(hτ ) = (hκ, hτ ) = 〈κ, τ〉 = 0. Now the action of f∗ is simply
to project elements of H∗

0 onto H∗ ′
0 . This follows because if ρ = ρ1 + ρ2, ρ1 ∈

H∗ ′
0 , ρ2 ∈ H∗, then for h′ ∈ H ′, f∗ ◦ ρ(h′) = ρ(f(h′)) = (ρ1 + ρ2)(h

′) = ρ1(h
′).

Thus f∗ ◦ ρ = ρ1.

Let M be a weight of a representation φ of G:

φ(h)ξM = M(h)ξM . (XVI.4)

Then if h ∈ H ′ ⊂ H ,

φ(f(h))ξM =M(f(h))ξM

=f∗ ◦ M(h)ξM . (XVI.5)
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It follows that if M is a weight of φ, then f∗ ◦ M is a weight of the representation
φ ◦ f of G′. More graphically, the weights of the representation of the subalgebra
are obtained by projecting the weights of the algebra from H∗

0 onto H∗ ′
0 .

A simple but important consequence of this conclusion is that if the rank of
G′ is the same as the rank of G, then the subalgebra is regular. This is so because if
the ranks are the same, then H∗ ′

0 coincides with H∗
0 so the projection is simply the

identity. Thus if we start with the adjoint representation of G, it will be mapped
(by the identity) into a reducible representation of G′ which contains the adjoint of
G′. But the weights of the adjoint of G′ must then have been among the weights
of the adjoint of G.

Let us pause to consider an example. Let us take G = G2 and G′ = A2.
We know this is a regular subalgebra. Indeed, examining the root diagram, we see
that the six long roots form the familiar hexagon of the adjoint representation of
SU(3) = A2. The projection f∗ here is just the identity map since the algebra and
the subalgebra have the same rank. The fourteen dimensional adjoint representation
becomes the sum of the eight dimensional adjoint representation of SU(3) and two
conjugate three dimensional representations.

We state without proof two of Dynkin’s theorems.1 If G′ is a regular subal-
gebra of G and φ is representation of G, then φ ◦ f is reducible. An approximate
converse is also true. If G is An, Bn or Cn, and G′ has a reducible representa-
tion which makes it a subalgebra of G by being respectively n-dimensional with
no bilinear invariant or 2n+1 dimensional with a symmetric bilinear invariant, or
2n dimensional with an anti-symmetric bilinear invariant, then G′ is regular. In
other words, if An, Bn, or Cn has an S-subalgebra, that S-subalgebra must have an
irreducible representation of dimension, n, 2n+1, or 2n respectively.

What happened to Dn in this theorem? As we saw in the last chapter,
O(s) × O(t) is an S-subalgebra of O(s + t) if both s and t are odd.

We now proceed to the determination of f∗, the mapping which connects H∗
0

to H∗ ′
0 . Once we know f∗ we can find the weights of φ ◦ f for any representation φ

of a given algebra. From these weights we can infer the irreducible representations
into which φ ◦ f decomposes. In fact, extensive tables of these branching rules have
been compiled by computer (see McKay and Patera). Here we seek to develop some
intuitive understanding of the procedure.
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To be explicit, we shall take an example: B3, that is O(7). By the methods of
the previous chapter we can easily find the maximal regular semi-simple subalgebras:
A3 = D3 and A1+A1+A1. In seeking the S-subalgebras, we note that the technique
O(s) × O(t) ⊂ O(st) is of no avail for st = 7. On the other hand, A1 has a seven
dimensional representation which has a symmetric bilinear form. Thus we might
anticipate that A1 is a maximal S-subalgebra of B3. In fact, as we shall see, A1 ⊂ G2

and G2 is maximal in B3.

There is a simple and effective way to find the mappings f∗ for the regular
subalgebras. Remember the procedure for constructing the extended Dynkin dia-
grams. We added the vector −γ to the diagram for the simple algebra, where γ was
the highest root. We then had a diagram for the set which was the union of −γ
and the simple roots. From this set, we struck one root. The remainder furnished
a basis of simple roots for the subalgebra. The Dynkin coefficients for the weights
relative to the new basis of simple roots are just the Dynkin coefficients with respect
to the surviving old simple roots, together with the Dynkin coefficient with respect
to −γ. Thus we simply calculate the Dynkin coefficient of each weight with respect
to −γ and use it in place of one of the old coefficients. Calculating the coefficient
with respect to −γ is trivial since we can express −γ as a linear combination of the
simple roots.

Let us use this technique to analyze the regular subalgebras of B3. The
Dynkin coefficients of γ are (0, 1, 0). Referring to the Cartan matrix we see that
−γ = α1 + 2α2 + 2α3. Since 〈γ, γ〉 = 〈α1, α1〉 = 〈α2, α2〉 = 2〈α3, α3〉, the coefficient
of a weight with respect to −γ is −a1 − 2a2 − a3 if the Dynkin coefficients with
respect to α1, α2, and α3 are a1, a2, and a3 respectively.
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In this way we construct the extended weight scheme for the seven di-
mensional representation of B3:

1 0 0 −1

−1 1 0 −1

0 −1 2 0

0 0 0 0

0 1 −2 0

1 −1 0 1

−1 0 0 1

Now the A3 regular subalgebra is obtained by using the fourth column, the
one for −γ, rather than the third one. Deleting the third column we have

1 0 −1

−1 1 −1

0 −1 0

0 0 0

0 1 0

1 −1 1

−1 0 1

This is a representation of A3. The candidates for highest weights of irreducible
components are (0,1,0) and (0,0,0) since these are the only ones with purely non-
negative Dynkin coefficients. Indeed, these give a six dimensional representation
and a one-dimensional representation. Moreover, we can deduce the projection
operator for this subalgebra directly by comparing three weights in the original
basis to their values in the basis for the subalgebra A3. In this way we find
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f∗
A3

(1, 0, 0) =(1, 0,−1)

f∗
A3

(0, 1, 0) =(0, 1,−2)

f∗
A3

(0, 0, 1) =(0, 0,−1) . (XVI.6)

Knowing this mapping gives us an alternative method of finding the weights of
some irreducible representation of B3 with respect to the subalgebra A3. Thus for
example, we can map the weights of the adjoint representation (it suffices just to
consider the positive roots ) of B3 into weights of A3:

0 1 0 → 0 1 −2

1 −1 2 → 1 −1 −1

−1 0 2 → −1 0 −1

1 0 0 → 1 0 −1

−1 1 0 → −1 1 −1

1 1 −2 → 1 1 −1

0 −1 2 → 0 −1 0

−1 2 −2 → −1 2 −1

2 −1 0 → 2 −1 0

From these weights and their negatives, it is clear that the candidates for high-
est weights are (1,0,1) and (0,1,0) which indeed correspond to representations of
dimension fifteen and six respectively.
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If we consider the subalgebra A1 + A1 + A1, deleting the Dynkin coefficients
with respect to the second root, we find the seven dimensional representation of B3

is mapped into
1 0 −1

−1 0 −1

0 2 0

0 0 0

0 −2 0

1 0 1

−1 0 1

This is the reducible representation whose Dynkin expression is [(0)+(2)+(0)] +
[(1)+(0)+(1)]. In the notation which indicates dimensionality, it is (1,3,1)+(2,1,2).

It is clear that the regular subalgebras can be dealt with in a very simple
fashion. The S-subalgebras require more effort. It is always possible to order the
Cartan subalgebras of the initial algebra and of its subalgebra so that if x > y,
x, y ∈ H ′ then f∗(x) > f∗(y). Now we exploit this by writing the weights of the
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seven dimensional representations of B3 and G2 beside each other:

1 0 0 0 1

−1 1 0 1 −1

0 −1 2 −1 2

0 0 0 0 0

0 1 −2 1 −2

1 −1 0 −1 1

−1 0 0 0 −1

Thus it is clear that we must have

f∗
G2

(1, 0, 0) =(0, 1)

f∗
G2

(0, 1, 0) =(1, 0)

f∗
G2

(0, 0, 1) =(0, 1) . (XVI.7)

Equipped with this mapping, we can project the weights of any representation of
B3 onto the space of weights of G2 and thus identify the branching rules.
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For example, we again consider the positive roots of B3 to find the branching
rule for the adjoint representation:

0 1 0 → 1 0

1 −1 2 → −1 3

−1 0 2 → 0 1

1 0 0 → 0 1

−1 1 0 → 1 −1

1 1 −2 → 1 −1

0 −1 2 → −1 2

−1 2 −2 → 2 −3

2 −1 0 → −2 2

0 0 0 → 0 0

The weights with non-negative Dynkin coefficients are (1,0), (0,1), and (0,1). Now
the fourteen dimensional representation has highest weight (1,0) and includes the
weight (0,1). Thus we see that the 21 dimensional representation of B3 becomes
the sum of a 14 dimensional representation and a 7 dimensional representation.
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Footnote

1. DYNKIN III, pp. 158–159.

References

Again, the entire chapter is due to DYNKIN III. The works of SLANSKY
and of MC KAY AND PATERA provide exhaustive tables.

Exercises

1. Find the branching rules for the ten-dimensional representation of SU(5) for
the maximal semi-simple subalgebras.

2. Find the branching rules for the 26 and 52 dimensional representations of F4

into its maximal semi-simple subalgebras.
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